2023 H2 Mathematics Paper 2 Question 4

Differentiation I: Tangents and Normals, Parametric Curves
Definite Integrals: Areas and Volumes

Answers

1215275.\frac{12152}{75}.

(5,4).5, 4).

(165,254).\left(- \frac{16}{5}, - \frac{25}{4}\right).

Full solutions

(a)

When x=21, x = 21,

2t2+3=212t2=18t2=9\begin{align*} 2 t^2 + 3 &= 21 \\ 2 t^2 &= 18 \\ t^2 &= 9 \end{align*}

Since t15,t=3 t \geq \frac{1}{5}, t = 3

When y=0,t=15.y=0, t=\frac{1}{5}.

x=2t2+3d ⁣xd ⁣t=4t\begin{align*} x &= 2 t^2 + 3 \\ \frac{\operatorname{d}\!x}{\operatorname{d}\!t} &= 4 t \end{align*}
Area=a21ydx=153(5t1)(4t)dt=[203t32t2]153=1215275  \begin{align*} & \text{Area} \\ &= \int_a^{21} y \, \mathrm{d}x \\ &= \int_{\frac{1}{5}}^{3} \left(5 t - 1\right) \left(4 t\right) \, \mathrm{d}t \\ &= \left[ \frac{20}{3} t^3 - 2 t^2 \right]_{\frac{1}{5}}^{3} \\ &= \frac{12152}{75} \; \blacksquare \end{align*}

(b)

Equating equations of the two curves,

2t2+3=5u5t1=5u\begin{align} 2 t^2 + 3 &= 5u \\ 5 t - 1 &= \frac{5}{u} \end{align}

Making uu the subject of (1) and (2) and equating them,

2t2+35=45t1(2t2+3)(5t1)=2510t32t2+15t3=2010t32t2+15t23=0\begin{align*} \frac{2 t^2 + 3}{5} &= \frac{4}{5 t - 1} \\ (2 t^2 + 3)(5 t - 1) &= 25 \\ 10 t^3 - 2 t^2 + 15 t - 3 &= 20 \\ 10 t^3 - 2 t^2 + 15 t - 23 &= 0 \end{align*}
(t1)(10t2+8t+23)=0\begin{equation} (t - 1)(10 t^2 + 8 t + 23) = 0 \end{equation}
Discriminant for 10t2+8t+23=10t2+8t+23=b24ac=824(10)(23)=856<0\begin{align*} &\text{Discriminant for } 10 t^2 + 8 t + 23 \\ &= 10 t^2 + 8 t + 23 \\ &= b^2 - 4ac \\ &= 8^2 - 4(10)(23) \\ &= - 856 \\ &< 0 \end{align*}

Hence 10t2+8t+23=010 t^2 + 8 t + 23=0 has no real roots.

Hence equation (3) only has one real root t=1t=1 which corresponds to AA and there are no other points of intersection   \; \blacksquare

When t=1,t=1,

x=5y=4\begin{align*} x &= 5 \\ y &= 4 \end{align*}
A=(5,4)  {A = (5, 4) \; \blacksquare}

(c)

d ⁣yd ⁣x=d ⁣yd ⁣t÷d ⁣xd ⁣t=54t\begin{align*} \frac{\operatorname{d}\!y}{\operatorname{d}\!x} &= \frac{\operatorname{d}\!y}{\operatorname{d}\!t} \div \frac{\operatorname{d}\!x}{\operatorname{d}\!t} \\ &= \frac{5}{4 t} \end{align*}

When t=1,t=1,

d ⁣yd ⁣x=54{ \frac{\operatorname{d}\!y}{\operatorname{d}\!x} = \frac{5}{4}}

Equation of tangent at A:A:

y4=54(x5)y=54x94\begin{align*} y - 4 &= \frac{5}{4} \left( x - 5 \right) \\ y &= \frac{5}{4} x - \frac{9}{4} \end{align*}

Substituting the parametric equations of curve D,D,

4u=254u94254u294u=425u29u=1625u29u16=0(25u+16)(u1)=0u=1625oru=1\begin{gather*} \frac{4}{u} = \frac{25}{4} u - \frac{9}{4} \\ \frac{25}{4} u^2 - \frac{9}{4} u = 4 \\ 25 u^2 - 9 u = 16 \\ 25 u^2 - 9 u - 16 = 0 \\ \left( 25 u + 16 \right) \left( u - 1 \right) = 0 \\ u = - \frac{16}{25} \quad \text{or} \quad u = 1 \end{gather*}

We note that u=1u=1 corresponds to AA

Hence, at the point where the tangent to curve CC at point AA meets curve DD for a second time

u=1625x=165y=254\begin{align*} u &= - \frac{16}{25} \\ x &= - \frac{16}{5} \\ y &= - \frac{25}{4} \end{align*}

Coordinates of point:

(165,254)  { \left(- \frac{16}{5}, - \frac{25}{4}\right) \; \blacksquare}

Question Commentary

Knowing how to work with curves with equation in parametric form for both integration and differentiation is important in solving this question.

The use of the discriminant to justify the number of points of intersection is also tested in part (b).