2010 H2 Mathematics Paper 1 Question 4

Differentiation I: Tangents and Normals, Parametric Curves

Answers

dydx=x+yyx{\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{x+y}{y-x}}
(2,2),  (2,2){\left(\sqrt{2}, -\sqrt{2}\right), \;}\allowbreak {\left(-\sqrt{2}, \sqrt{2}\right)}

Full solutions

(i)

x2y2+2xy+4=0\begin{equation} \qquad x^2 - y^2 + 2xy + 4 = 0 \end{equation}
2x2ydydx+2xdydx+2y=02x - 2y \frac{\mathrm{d}y}{\mathrm{d}x} + 2x \frac{\mathrm{d}y}{\mathrm{d}x} + 2y = 0
dydx(2x2y)=2x2ydydx=x+yyx  \begin{align*} \frac{\mathrm{d}y}{\mathrm{d}x} \left( 2x-2y \right) &= -2x-2y \\ \frac{\mathrm{d}y}{\mathrm{d}x} &= \frac{x+y}{y-x} \; \blacksquare \end{align*}

(ii)

When the tangent is parallel to the x-{x\textrm{-}}axis,
dydx=0x+yyx=0\begin{align*} \frac{\mathrm{d}y}{\mathrm{d}x} &= 0 \\ \frac{x+y}{y-x} &= 0\\ \end{align*}
y=x\begin{equation} \qquad y = -x \end{equation}
Substituting (2){(2)} into (1),{(1),}
x2(x)2+2x(x)+4=02x2=4\begin{gather*} x^2 - (-x)^2 + 2x(-x) + 4 = 0 \\ 2x^2 = 4 \end{gather*}
x=±2y=2\begin{align*} x &= \pm \sqrt{2} \\ y &= \mp \sqrt{2} \end{align*}
Coordinates of points at which the tangent is parallel to the x-{x\textrm{-}}axis:
(2,2)  ,(2,2)  \begin{align*} \left(\sqrt{2}, -\sqrt{2}\right) \;& \blacksquare, \\ \left(-\sqrt{2}, \sqrt{2}\right) \; &\blacksquare \end{align*}