2018 H2 Mathematics Paper 1 Question 9

Differentiation I: Tangents and Normals, Parametric Curves

Answers

x=2α{x=2\alpha}
8 units{8 \textrm{ units}}

Full solutions

(i)

dxdt=22cos2θdydt=4sinθcosθ\begin{align*} \frac{\mathrm{d}x}{\mathrm{d}t} &= 2 - 2 \cos 2 \theta \\ \frac{\mathrm{d}y}{\mathrm{d}t} &= 4 \sin \theta \cos \theta \\ \end{align*}
dydx=dydt÷dxdt=4sinθcosθ22cos2θ=4sinθcosθ22(12sin2θ)=4sinθcosθ4sin2θ=cotθ  \begin{align*} \frac{\mathrm{d}y}{\mathrm{d}x} &= \frac{\mathrm{d}y}{\mathrm{d}t} \div \frac{\mathrm{d}x}{\mathrm{d}t} \\ &= \frac{4 \sin \theta \cos \theta}{2 - 2 \cos 2 \theta} \\ &= \frac{4 \sin \theta \cos \theta}{2 - 2 ( 1 - 2 \sin^2 \theta )} \\ &= \frac{4 \sin \theta \cos \theta}{4 \sin^2 \theta} \\ &=\cot \theta \; \blacksquare \end{align*}

(ii)

At point where θ=α,{\theta = \alpha, }
Gradient of normal=tanα\begin{align*} & \textrm{Gradient of normal} \\ &= - \tan \alpha \end{align*}
Equation of normal:
y2sin2α=tanα(x(2αsin2α))\begin{gather*} y - 2 \sin^2 \alpha = - \tan \alpha \left( x - (2\alpha - \sin 2 \alpha) \right) \\ \end{gather*}
At point A,y=0,{A, y=0,}
02sin2α=tanα(x2α+2sinαcosα)x2α+2sinαcosα=2sinαcosα\begin{gather*} 0 - 2 \sin^2 \alpha = -\tan \alpha \left( x - 2\alpha + 2 \sin \alpha \cos \alpha \right) \\ x - 2\alpha + 2 \sin \alpha \cos \alpha = 2 \sin \alpha \cos \alpha \\ \end{gather*}
x=2α  x = 2\alpha \; \blacksquare

(iii)

Total length of C=0π(22cos2θ)2+(4sinθcosθ)2  dθ=0π(22(12sin2θ))2+16sin2θcos2θ  dθ=0π16sin4θ+16sin2θcos2θ  dθ=0π16sin2θ(sin2θ+cos2θ)  dθ=0π4sinθ  dθ=[4cosθ]0π=4cosπ+4cos0=8 units  \begin{align*} & \textrm{Total length of } C \\ & = \int_0^\pi \sqrt{ (2-2\cos 2\theta)^2 + (4\sin \theta \cos \theta)^2 } \; \mathrm{d} \theta \\ & = \int_0^\pi \sqrt{ \Big(2 - 2 (1 - 2 \sin^2 \theta) \Big)^2 + 16 \sin^2 \theta \cos^2 \theta } \; \mathrm{d} \theta \\ & = \int_0^\pi \sqrt{ 16 \sin^4 \theta + 16 \sin^2 \theta \cos^2 \theta } \; \mathrm{d} \theta \\ & = \int_0^\pi \sqrt{ 16 \sin^2 \theta (\sin^2 \theta + \cos^2 \theta) } \; \mathrm{d} \theta \\ & = \int_0^\pi 4 \sin \theta \; \mathrm{d} \theta \\ & = \left[ -4 \cos \theta \right]_0^\pi \\ & = -4 \cos \pi + 4 \cos 0 \\ & = 8 \textrm{ units} \; \blacksquare \\ \end{align*}