Math Repository
about
topic
al
year
ly
Yearly
2018
P1 Q9
Topical
Tangents
18 P1 Q9
2018 H2 Mathematics Paper 1 Question 9
Differentiation I: Tangents and Normals, Parametric Curves
Answers
(ii)
x
=
2
α
{x=2\alpha}
x
=
2
α
(iii)
8
units
{8 \textrm{ units}}
8
units
Full solutions
(i)
d
x
d
t
=
2
−
2
cos
2
θ
d
y
d
t
=
4
sin
θ
cos
θ
\begin{align*} \frac{\mathrm{d}x}{\mathrm{d}t} &= 2 - 2 \cos 2 \theta \\ \frac{\mathrm{d}y}{\mathrm{d}t} &= 4 \sin \theta \cos \theta \\ \end{align*}
d
t
d
x
d
t
d
y
=
2
−
2
cos
2
θ
=
4
sin
θ
cos
θ
d
y
d
x
=
d
y
d
t
÷
d
x
d
t
=
4
sin
θ
cos
θ
2
−
2
cos
2
θ
=
4
sin
θ
cos
θ
2
−
2
(
1
−
2
sin
2
θ
)
=
4
sin
θ
cos
θ
4
sin
2
θ
=
cot
θ
■
\begin{align*} \frac{\mathrm{d}y}{\mathrm{d}x} &= \frac{\mathrm{d}y}{\mathrm{d}t} \div \frac{\mathrm{d}x}{\mathrm{d}t} \\ &= \frac{4 \sin \theta \cos \theta}{2 - 2 \cos 2 \theta} \\ &= \frac{4 \sin \theta \cos \theta}{2 - 2 ( 1 - 2 \sin^2 \theta )} \\ &= \frac{4 \sin \theta \cos \theta}{4 \sin^2 \theta} \\ &=\cot \theta \; \blacksquare \end{align*}
d
x
d
y
=
d
t
d
y
÷
d
t
d
x
=
2
−
2
cos
2
θ
4
sin
θ
cos
θ
=
2
−
2
(
1
−
2
sin
2
θ
)
4
sin
θ
cos
θ
=
4
sin
2
θ
4
sin
θ
cos
θ
=
cot
θ
■
(ii)
At point where
θ
=
α
,
{\theta = \alpha, }
θ
=
α
,
Gradient of normal
=
−
tan
α
\begin{align*} & \textrm{Gradient of normal} \\ &= - \tan \alpha \end{align*}
Gradient of normal
=
−
tan
α
Equation of normal:
y
−
2
sin
2
α
=
−
tan
α
(
x
−
(
2
α
−
sin
2
α
)
)
\begin{gather*} y - 2 \sin^2 \alpha = - \tan \alpha \left( x - (2\alpha - \sin 2 \alpha) \right) \\ \end{gather*}
y
−
2
sin
2
α
=
−
tan
α
(
x
−
(
2
α
−
sin
2
α
)
)
At point
A
,
y
=
0
,
{A, y=0,}
A
,
y
=
0
,
0
−
2
sin
2
α
=
−
tan
α
(
x
−
2
α
+
2
sin
α
cos
α
)
x
−
2
α
+
2
sin
α
cos
α
=
2
sin
α
cos
α
\begin{gather*} 0 - 2 \sin^2 \alpha = -\tan \alpha \left( x - 2\alpha + 2 \sin \alpha \cos \alpha \right) \\ x - 2\alpha + 2 \sin \alpha \cos \alpha = 2 \sin \alpha \cos \alpha \\ \end{gather*}
0
−
2
sin
2
α
=
−
tan
α
(
x
−
2
α
+
2
sin
α
cos
α
)
x
−
2
α
+
2
sin
α
cos
α
=
2
sin
α
cos
α
x
=
2
α
■
x = 2\alpha \; \blacksquare
x
=
2
α
■
(iii)
Total length of
C
=
∫
0
π
(
2
−
2
cos
2
θ
)
2
+
(
4
sin
θ
cos
θ
)
2
d
θ
=
∫
0
π
(
2
−
2
(
1
−
2
sin
2
θ
)
)
2
+
16
sin
2
θ
cos
2
θ
d
θ
=
∫
0
π
16
sin
4
θ
+
16
sin
2
θ
cos
2
θ
d
θ
=
∫
0
π
16
sin
2
θ
(
sin
2
θ
+
cos
2
θ
)
d
θ
=
∫
0
π
4
sin
θ
d
θ
=
[
−
4
cos
θ
]
0
π
=
−
4
cos
π
+
4
cos
0
=
8
units
■
\begin{align*} & \textrm{Total length of } C \\ & = \int_0^\pi \sqrt{ (2-2\cos 2\theta)^2 + (4\sin \theta \cos \theta)^2 } \; \mathrm{d} \theta \\ & = \int_0^\pi \sqrt{ \Big(2 - 2 (1 - 2 \sin^2 \theta) \Big)^2 + 16 \sin^2 \theta \cos^2 \theta } \; \mathrm{d} \theta \\ & = \int_0^\pi \sqrt{ 16 \sin^4 \theta + 16 \sin^2 \theta \cos^2 \theta } \; \mathrm{d} \theta \\ & = \int_0^\pi \sqrt{ 16 \sin^2 \theta (\sin^2 \theta + \cos^2 \theta) } \; \mathrm{d} \theta \\ & = \int_0^\pi 4 \sin \theta \; \mathrm{d} \theta \\ & = \left[ -4 \cos \theta \right]_0^\pi \\ & = -4 \cos \pi + 4 \cos 0 \\ & = 8 \textrm{ units} \; \blacksquare \\ \end{align*}
Total length of
C
=
∫
0
π
(
2
−
2
cos
2
θ
)
2
+
(
4
sin
θ
cos
θ
)
2
d
θ
=
∫
0
π
(
2
−
2
(
1
−
2
sin
2
θ
)
)
2
+
16
sin
2
θ
cos
2
θ
d
θ
=
∫
0
π
16
sin
4
θ
+
16
sin
2
θ
cos
2
θ
d
θ
=
∫
0
π
16
sin
2
θ
(
sin
2
θ
+
cos
2
θ
)
d
θ
=
∫
0
π
4
sin
θ
d
θ
=
[
−
4
cos
θ
]
0
π
=
−
4
cos
π
+
4
cos
0
=
8
units
■
Back to top ▲