2021 H2 Mathematics Paper 2 Question 2

Definite Integrals: Areas and Volumes

Answers

h=45{h=\frac{4}{5}}
45n=15(f(1+45n)){{\displaystyle \frac{4}{5}} {\displaystyle \sum_{n=1}^5} \left( f\left( 1 + \frac{4}{5}n \right) \right) }
Lower bound =7011255.61{= \frac{701}{125} \approx 5.61}
Upper bound =8211256.57{= \frac{821}{125} \approx 6.57}

Full solutions

(a)

h=45  h=\frac{4}{5} \; \blacksquare
The area of the rectangles, n=04(f(1+nh))h{\displaystyle \sum_{n=0}^4 \left( f(1+nh) \right)h} is smaller than the area under graph, A.{A.}

(b)

45n=15(f(1+45n)){\displaystyle \frac{4}{5}} {\displaystyle \sum_{n=1}^5} \left( f\left( 1 + \frac{4}{5}n \right) \right)

(c)

Lower bound=45n=04(f(1+45n))=45(f(1)+f(95)+f(135)+f(175)+f(215))=45(2120+581500+669500+789500+941500)=701125  \begin{align*} & \textrm{Lower bound} \\ & = {\displaystyle \frac{4}{5}} {\displaystyle \sum_{n=0}^4} \left( f\left( 1 + \frac{4}{5}n \right) \right) \\ & = \frac{4}{5} \left( f(1) + f\left( \frac{9}{5} \right) + f\left( \frac{13}{5} \right) + f\left( \frac{17}{5} \right) + f\left( \frac{21}{5} \right) \right) \\ & = \frac{4}{5} \left( \frac{21}{20} + \frac{581}{500} + \frac{669}{500} + \frac{789}{500} + \frac{941}{500} \right) \\ & = \frac{701}{125} \; \blacksquare \end{align*}
Upper bound=45n=15(f(1+45n))=45(f(95)+f(135)+f(175)+f(215)+f(5))=45(581500+669500+789500+941500+94)=821125  \begin{align*} & \textrm{Upper bound} \\ & = {\displaystyle \frac{4}{5}} {\displaystyle \sum_{n=1}^5} \left( f\left( 1 + \frac{4}{5}n \right) \right) \\ & = \frac{4}{5} \left( f\left( \frac{9}{5} \right) + f\left( \frac{13}{5} \right) + f\left( \frac{17}{5} \right) + f\left( \frac{21}{5} \right) + f\left( 5 \right) \right) \\ & = \frac{4}{5} \left( \frac{581}{500} + \frac{669}{500} + \frac{789}{500} + \frac{941}{500} + \frac{9}{4} \right) \\ & = \frac{821}{125} \; \blacksquare \end{align*}

(d)