Answers
32π32+4π22−2π
Full solutions
(i)
Using a GC,
A1=∫04πsinxdx+∫4π2πcosxdx=[−cosx]04π+[sinx]4π2π=−212+1+1−212=2−2
A2=∫04πcosxdx−∫04πsinxdx=[sinx]04π−[−cosx]04π=212−0+212−1=2−1
A2A1=2−12−2=2−12−2×2+12+1=2−122−2+2−2=2■
(ii)
Volume of solid formed=π∫0212x2dy=π∫0212(sin−1y)2dy■
(iii)
dudy=cosuu=sin−1y
When y=0, u=0
When y=212, u=4π
Exact volume=π∫0212(sin−1y)2dy=π∫04πu2cosudu■=π([u2sinu]04π−∫04π2usinudu)=π(16π222−0−([−2ucosu]04π−∫04π−2cosudu))=π(32π22+2(4π)22−0−2[sinu]04π)=π(32π22+4π2−2(22)+0)=(32π32+4π22−2π) units3■