Math Repository
about
topic
al
year
ly
Yearly
2015
P1 Q10
Topical
Areas & Volumes
15 P1 Q10
2015 H2 Mathematics Paper 1 Question 10
Definite Integrals: Areas and Volumes
Answers
(iii)
π
3
2
32
+
π
2
2
4
−
2
π
{\frac{\pi^3\sqrt{2}}{32} + \frac{\pi^2 \sqrt{2}}{4} - \sqrt{2}\pi}
32
π
3
2
+
4
π
2
2
−
2
π
Full solutions
(i)
Using a GC,
A
1
=
∫
0
π
4
sin
x
d
x
+
∫
π
4
π
2
cos
x
d
x
=
[
−
cos
x
]
0
π
4
+
[
sin
x
]
π
4
π
2
=
−
1
2
2
+
1
+
1
−
1
2
2
=
2
−
2
\begin{align*} A_1 & = \int_0^{\frac{\pi}{4}} \sin x \; \mathrm{d}x + \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \cos x \; \mathrm{d}x \\ &= \Big[ -\cos x \Big]_0^{\frac{\pi}{4}} + \Big[ \sin x \Big]_{\frac{\pi}{4}}^{\frac{\pi}{2}} \\ &= -\frac{1}{2} \sqrt{2} + 1 + 1 - \frac{1}{2} \sqrt{2} \\ &= 2-\sqrt{2} \end{align*}
A
1
=
∫
0
4
π
sin
x
d
x
+
∫
4
π
2
π
cos
x
d
x
=
[
−
cos
x
]
0
4
π
+
[
sin
x
]
4
π
2
π
=
−
2
1
2
+
1
+
1
−
2
1
2
=
2
−
2
A
2
=
∫
0
π
4
cos
x
d
x
−
∫
0
π
4
sin
x
d
x
=
[
sin
x
]
0
π
4
−
[
−
cos
x
]
0
π
4
=
1
2
2
−
0
+
1
2
2
−
1
=
2
−
1
\begin{align*} A_2 & = \int_0^{\frac{\pi}{4}} \cos x \; \mathrm{d}x - \int_0^{\frac{\pi}{4}} \sin x \; \mathrm{d}x \\ &= \Big[ \sin x \Big]_0^{\frac{\pi}{4}} - \Big[ -\cos x \Big]_{0}^{\frac{\pi}{4}} \\ &= \frac{1}{2} \sqrt{2} - 0 + \frac{1}{2} \sqrt{2} - 1 \\ &= \sqrt{2} - 1 \end{align*}
A
2
=
∫
0
4
π
cos
x
d
x
−
∫
0
4
π
sin
x
d
x
=
[
sin
x
]
0
4
π
−
[
−
cos
x
]
0
4
π
=
2
1
2
−
0
+
2
1
2
−
1
=
2
−
1
A
1
A
2
=
2
−
2
2
−
1
=
2
−
2
2
−
1
×
2
+
1
2
+
1
=
2
2
−
2
+
2
−
2
2
−
1
=
2
■
\begin{align*} \frac{A_1}{A_2} &= \frac{2-\sqrt{2}}{\sqrt{2}-1} \\ &= \frac{2-\sqrt{2}}{\sqrt{2}-1} \times \frac{\sqrt{2}+1}{\sqrt{2}+1} \\ &= \frac{2\sqrt{2} - 2 + 2 - \sqrt{2} }{2-1} \\ &= \sqrt{2} \; \blacksquare \end{align*}
A
2
A
1
=
2
−
1
2
−
2
=
2
−
1
2
−
2
×
2
+
1
2
+
1
=
2
−
1
2
2
−
2
+
2
−
2
=
2
■
(ii)
Volume of solid formed
=
π
∫
0
1
2
2
x
2
d
y
=
π
∫
0
1
2
2
(
sin
−
1
y
)
2
d
y
■
\begin{align*} & \textrm{Volume of solid formed} \\ & = \pi \int_0^{\frac{1}{2} \sqrt{2}} x^2 \; \mathrm{d}y \\ & = \pi \int_0^{\frac{1}{2} \sqrt{2}} \left( \sin^{-1}y \right)^2 \; \mathrm{d}y \; \blacksquare \end{align*}
Volume of solid formed
=
π
∫
0
2
1
2
x
2
d
y
=
π
∫
0
2
1
2
(
sin
−
1
y
)
2
d
y
■
(iii)
d
y
d
u
=
cos
u
u
=
sin
−
1
y
\begin{gather*} \frac{\mathrm{d}y}{\mathrm{d}u} = \cos u \\ u = \sin^{-1} y \end{gather*}
d
u
d
y
=
cos
u
u
=
sin
−
1
y
When
y
=
0
,
{y = 0, }
y
=
0
,
u
=
0
{u = 0}
u
=
0
When
y
=
1
2
2
,
{y=\frac{1}{2} \sqrt{2}, }
y
=
2
1
2
,
u
=
π
4
{u = \frac{\pi}{4}}
u
=
4
π
Exact volume
=
π
∫
0
1
2
2
(
sin
−
1
y
)
2
d
y
=
π
∫
0
π
4
u
2
cos
u
d
u
■
=
π
(
[
u
2
sin
u
]
0
π
4
−
∫
0
π
4
2
u
sin
u
d
u
)
=
π
(
π
2
16
2
2
−
0
−
(
[
−
2
u
cos
u
]
0
π
4
−
∫
0
π
4
−
2
cos
u
d
u
)
)
=
π
(
π
2
2
32
+
2
(
π
4
)
2
2
−
0
−
2
[
sin
u
]
0
π
4
)
=
π
(
π
2
2
32
+
π
2
4
−
2
(
2
2
)
+
0
)
=
(
π
3
2
32
+
π
2
2
4
−
2
π
)
units
3
■
\begin{align*} & \textrm{Exact volume} \\ & = \pi \int_0^{\frac{1}{2} \sqrt{2}} \left( \sin^{-1}y \right)^2 \; \mathrm{d}y \\ & = \pi \int_0^{\frac{\pi}{4}} u^2 \cos u \; \mathrm{d}u \; \blacksquare \\ & = \pi \left( \Big[ u^{2} \sin u \Big]_0^{\frac{\pi}{4}} - \int_0^{\frac{\pi}{4}} 2u \sin u \; \mathrm{d}u \right) \\ & = \pi \left( \frac{\pi^2}{16} \frac{\sqrt{2}}{2} - 0 - \left( \Big[ -2u \cos u \Big]_0^{\frac{\pi}{4}} - \int_0^{\frac{\pi}{4}} -2 \cos u \; \mathrm{d}u \right) \right) \\ & = \pi \left( \frac{\pi^2\sqrt{2}}{32} + 2 \left( \frac{\pi}{4} \right) \frac{\sqrt{2}}{2} - 0 - 2 \Big[ \sin u \Big]_0^{\frac{\pi}{4}} \right) \\ & = \pi \left( \frac{\pi^2\sqrt{2}}{32} + \frac{\pi \sqrt{2}}{4} - 2 \left( \frac{\sqrt{2}}{2} \right) + 0 \right) \\ & = \left( \frac{\pi^3\sqrt{2}}{32} + \frac{\pi^2 \sqrt{2}}{4} - \sqrt{2}\pi \right) \textrm{ units}^3 \; \blacksquare \end{align*}
Exact volume
=
π
∫
0
2
1
2
(
sin
−
1
y
)
2
d
y
=
π
∫
0
4
π
u
2
cos
u
d
u
■
=
π
(
[
u
2
sin
u
]
0
4
π
−
∫
0
4
π
2
u
sin
u
d
u
)
=
π
(
16
π
2
2
2
−
0
−
(
[
−
2
u
cos
u
]
0
4
π
−
∫
0
4
π
−
2
cos
u
d
u
)
)
=
π
(
32
π
2
2
+
2
(
4
π
)
2
2
−
0
−
2
[
sin
u
]
0
4
π
)
=
π
(
32
π
2
2
+
4
π
2
−
2
(
2
2
)
+
0
)
=
(
32
π
3
2
+
4
π
2
2
−
2
π
)
units
3
■
Back to top ▲