2023 H2 Mathematics Paper 2 Question 3

Vectors II: Lines and Planes

Answers

(51014).\begin{pmatrix} 5 \\ - 10 \\ 14 \end{pmatrix}.
d=172.d = \frac{17}{2}.
83.8.83.8^\circ.
(77273624136).\begin{pmatrix} \frac{7}{72} \\ \frac{7}{36} \\ \frac{241}{36} \end{pmatrix}.

Full solutions

(a)

BC=2AB=2(OBOA)=2((128)(125))=(486)\begin{align*} \overrightarrow{BC} &= 2 \overrightarrow{AB} \\ &= 2 \left( \overrightarrow{OB} - \overrightarrow{OA} \right) \\ &= 2 \left( \begin{pmatrix} 1 \\ - 2 \\ 8 \end{pmatrix} - \begin{pmatrix} - 1 \\ 2 \\ 5 \end{pmatrix} \right) \\ &= \begin{pmatrix} 4 \\ - 8 \\ 6 \end{pmatrix} \end{align*}
OCOB=(486)OC=(486)+(128)=(51014)  \begin{align*} \overrightarrow{OC} - \overrightarrow{OB} &= \begin{pmatrix} 4 \\ - 8 \\ 6 \end{pmatrix} \\ \overrightarrow{OC} &= \begin{pmatrix} 4 \\ - 8 \\ 6 \end{pmatrix} + \begin{pmatrix} 1 \\ - 2 \\ 8 \end{pmatrix} \\ &= \begin{pmatrix} 5 \\ - 10 \\ 14 \end{pmatrix} \; \blacksquare \end{align*}

(b)

AD=BDODOA=ODOB(12d)(125)=(12d)(128)(20d5)=(04d8)22+02+(d5)2=02+42+(d8)2\begin{align*} \left| \overrightarrow{AD} \right| &= \left| \overrightarrow{BD} \right| \\ \left| \overrightarrow{OD} - \overrightarrow{OA} \right| &= \left| \overrightarrow{OD} - \overrightarrow{OB} \right| \\ \left| \begin{pmatrix} 1 \\ 2 \\ d \end{pmatrix} - \begin{pmatrix} - 1 \\ 2 \\ 5 \end{pmatrix} \right| &= \left| \begin{pmatrix} 1 \\ 2 \\ d \end{pmatrix} - \begin{pmatrix} 1 \\ - 2 \\ 8 \end{pmatrix} \right| \\ \left| \begin{pmatrix} 2 \\ 0 \\ d - 5 \end{pmatrix} \right| &= \left| \begin{pmatrix} 0 \\ 4 \\ d - 8 \end{pmatrix} \right| \\ \sqrt{2^2 + 0^2 + (d - 5)^2} &= \sqrt{ 0^2 + 4^2 + (d - 8)^2} \\ \end{align*}
d210d+29=d216d+8010d+29=16d+806d=51d=172  \begin{align*} d^2 - 10 d + 29 &= d^2 - 16 d + 80 \\ - 10 d + 29 &= - 16 d + 80 \\ 6 d &= 51 \\ d &= \frac{17}{2} \; \blacksquare \end{align*}

(c)

DA=OAOD=(125)(12172)=(2072)DB=OBOD=(128)(12172)=(0412)\begin{align*} \overrightarrow{DA} &= \overrightarrow{OA} - \overrightarrow{OD} \\ &= \begin{pmatrix} - 1 \\ 2 \\ 5 \end{pmatrix} - \begin{pmatrix} 1 \\ 2 \\ \frac{17}{2} \end{pmatrix} \\ &= \begin{pmatrix} - 2 \\ 0 \\ - \frac{7}{2} \end{pmatrix} \\ \overrightarrow{DB} &= \overrightarrow{OB} - \overrightarrow{OD} \\ &= \begin{pmatrix} 1 \\ - 2 \\ 8 \end{pmatrix} - \begin{pmatrix} 1 \\ 2 \\ \frac{17}{2} \end{pmatrix} \\ &= \begin{pmatrix} 0 \\ - 4 \\ - \frac{1}{2} \end{pmatrix} \end{align*}
DADB=DADBcosADB(2072)(0412)=(2072)(0412)cosADBcosADB=741265(1265)\begin{gather*} \overrightarrow{DA} \cdot \overrightarrow{DB} = \left| \overrightarrow{DA} \right| \left| \overrightarrow{DB} \right| \cos \angle ADB \\ \begin{pmatrix} - 2 \\ 0 \\ - \frac{7}{2} \end{pmatrix} \cdot \begin{pmatrix} 0 \\ - 4 \\ - \frac{1}{2} \end{pmatrix} = \left| \begin{pmatrix} - 2 \\ 0 \\ - \frac{7}{2} \end{pmatrix} \right| \left| \begin{pmatrix} 0 \\ - 4 \\ - \frac{1}{2} \end{pmatrix} \right| \cos \angle ADB \\ \cos \angle ADB = \frac{\frac{7}{4}}{\frac{1}{2} \sqrt{65}\left(\frac{1}{2} \sqrt{65}\right)} \\ \end{gather*}
ADB=cos1(741265(1265))=83.8  (1 dp)  \begin{align*} \angle ADB &= \cos^{-1} \left( \frac{\frac{7}{4}}{\frac{1}{2} \sqrt{65}\left(\frac{1}{2} \sqrt{65}\right)} \right) \\ &= 83.8^\circ \; (\textrm{1 dp}) \; \blacksquare \end{align*}

(d)

Let MM be the midpoint of AB.AB.

Since AD=BD,| \overrightarrow{AD} | = | \overrightarrow{BD} |, the line passing through DD and MM is the perpendicular bisector of AB.AB.

Hence the centre of the circle, P,P, lies on the line MD.MD.

OM=OA+OB2=(125)+(128)2=(00132)\begin{align*} \overrightarrow{OM} &= \frac{\overrightarrow{OA} + \overrightarrow{OB}}{2} \\ &= \frac{\begin{pmatrix} - 1 \\ 2 \\ 5 \end{pmatrix} + \begin{pmatrix} 1 \\ - 2 \\ 8 \end{pmatrix}}{2} \\ &= \begin{pmatrix} 0 \\ 0 \\ \frac{13}{2} \end{pmatrix} \end{align*}
MD=ODOM=(12172)(00132)=(122)\begin{align*} \overrightarrow{MD} &= \overrightarrow{OD} - \overrightarrow{OM} \\ &= \begin{pmatrix} 1 \\ 2 \\ \frac{17}{2} \end{pmatrix} - \begin{pmatrix} 0 \\ 0 \\ \frac{13}{2} \end{pmatrix} \\ &= \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix} \end{align*}
lMD:r=(12172)+λ(122){l_{MD}: \mathbf{r} = \begin{pmatrix} 1 \\ 2 \\ \frac{17}{2} \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix}}
OP=(1+λ2+2λ172+2λ)\begin{equation} \overrightarrow{OP} = \begin{pmatrix} 1 + \lambda \\ 2 + 2 \lambda \\ \frac{17}{2} + 2 \lambda \end{pmatrix} \end{equation}
DP=APOPOD=OAOP(1+λ2+2λ172+2λ)(12172)=(1+λ2+2λ172+2λ)(125)(λ2λ2λ)=(2+λ2λ72+2λ)λ2+(2λ)2+(2λ)2=(2+λ)2+(2λ)2+(72+2λ)29λ2=654+18λ+9λ2\begin{gather*} | \overrightarrow{DP} | = \left| \overrightarrow{AP} \right| \\ \left| \overrightarrow{OP} - \overrightarrow{OD} \right| = \left| \overrightarrow{OA} - \overrightarrow{OP} \right| \\ \left| \begin{pmatrix} 1 + \lambda \\ 2 + 2 \lambda \\ \frac{17}{2} + 2 \lambda \end{pmatrix} - \begin{pmatrix} 1 \\ 2 \\ \frac{17}{2} \end{pmatrix} \right| = \left| \begin{pmatrix} 1 + \lambda \\ 2 + 2 \lambda \\ \frac{17}{2} + 2 \lambda \end{pmatrix} - \begin{pmatrix} - 1 \\ 2 \\ 5 \end{pmatrix} \right| \\ \left| \begin{pmatrix} λ \\ 2 λ \\ 2 λ \end{pmatrix} \right| = \left| \begin{pmatrix} 2 + λ \\ 2 λ \\ \frac{7}{2} + 2 λ \end{pmatrix} \right| \\ \sqrt{ λ^2 + (2 λ)^2 + (2 λ)^2 } = \sqrt{ (2 + λ)^2 + (2 λ)^2 + \left(\frac{7}{2} + 2 λ\right)^2 } \\ 9 λ^2 = \frac{65}{4} + 18 λ + 9 λ^2 \end{gather*}
18λ+654=018λ=654λ=6572\begin{gather*} 18 λ + \frac{65}{4} = 0 \\ 18 λ = - \frac{65}{4} \\ λ = - \frac{65}{72} \end{gather*}

Substituting λ=6572λ = - \frac{65}{72} into (1),(1),

OP=(77273624136)  \begin{align*} \overrightarrow{OP} &= \begin{pmatrix} \frac{7}{72} \\ \frac{7}{36} \\ \frac{241}{36} \end{pmatrix} \; \blacksquare \end{align*}

Question Commentary

The first three parts are pretty standard, but the last part is novel and challenging.

For the O Levels A Math syllabus we learnt in coordinate geometry that the centre of circles can be found by finding the perpendicular bisector of two points on the circle.

However, for a 3D question like this one, finding the perpendicular bisector is not easy and we will have to observe the earlier result in part (b). Thereafter, we can use magnitudes to find the final answer as shown above.

An alternative method could be to equate P=(x,y,z)P = (x,y,z) and set up a system of linear equations. Two equations come from DP=AP=BP\left| \overrightarrow{DP} \right| = \left| \overrightarrow{AP} \right| = \left| \overrightarrow{BP} \right| while the third equation comes from the fact that PP lies on plane ABD.ABD.