2023 H2 Mathematics Paper 2 Question 3 Vectors II: Lines and Planes
Answers
( 5 − 10 14 ) . \begin{pmatrix}
5 \\
- 10 \\
14
\end{pmatrix}. 5 − 10 14 .
d = 17 2 . d = \frac{17}{2}. d = 2 17 .
( 7 72 7 36 241 36 ) . \begin{pmatrix}
\frac{7}{72} \\
\frac{7}{36} \\
\frac{241}{36}
\end{pmatrix}. 72 7 36 7 36 241 .
Full solutions
(a)
B C → = 2 A B → = 2 ( O B → − O A → ) = 2 ( ( 1 − 2 8 ) − ( − 1 2 5 ) ) = ( 4 − 8 6 ) \begin{align*}
\overrightarrow{BC} &= 2 \overrightarrow{AB} \\
&= 2 \left( \overrightarrow{OB} - \overrightarrow{OA} \right) \\
&= 2 \left( \begin{pmatrix}
1 \\
- 2 \\
8
\end{pmatrix} - \begin{pmatrix}
- 1 \\
2 \\
5
\end{pmatrix} \right) \\
&= \begin{pmatrix}
4 \\
- 8 \\
6
\end{pmatrix}
\end{align*} BC = 2 A B = 2 ( OB − O A ) = 2 1 − 2 8 − − 1 2 5 = 4 − 8 6
O C → − O B → = ( 4 − 8 6 ) O C → = ( 4 − 8 6 ) + ( 1 − 2 8 ) = ( 5 − 10 14 ) ■ \begin{align*}
\overrightarrow{OC} - \overrightarrow{OB} &= \begin{pmatrix}
4 \\
- 8 \\
6
\end{pmatrix} \\
\overrightarrow{OC} &= \begin{pmatrix}
4 \\
- 8 \\
6
\end{pmatrix} + \begin{pmatrix}
1 \\
- 2 \\
8
\end{pmatrix} \\
&= \begin{pmatrix}
5 \\
- 10 \\
14
\end{pmatrix} \; \blacksquare
\end{align*} OC − OB OC = 4 − 8 6 = 4 − 8 6 + 1 − 2 8 = 5 − 10 14 ■
(b)
∣ A D → ∣ = ∣ B D → ∣ ∣ O D → − O A → ∣ = ∣ O D → − O B → ∣ ∣ ( 1 2 d ) − ( − 1 2 5 ) ∣ = ∣ ( 1 2 d ) − ( 1 − 2 8 ) ∣ ∣ ( 2 0 d − 5 ) ∣ = ∣ ( 0 4 d − 8 ) ∣ 2 2 + 0 2 + ( d − 5 ) 2 = 0 2 + 4 2 + ( d − 8 ) 2 \begin{align*}
\left| \overrightarrow{AD} \right| &= \left| \overrightarrow{BD} \right| \\
\left| \overrightarrow{OD} - \overrightarrow{OA} \right| &= \left| \overrightarrow{OD} - \overrightarrow{OB} \right| \\
\left| \begin{pmatrix}
1 \\
2 \\
d
\end{pmatrix} - \begin{pmatrix}
- 1 \\
2 \\
5
\end{pmatrix} \right| &= \left| \begin{pmatrix}
1 \\
2 \\
d
\end{pmatrix} - \begin{pmatrix}
1 \\
- 2 \\
8
\end{pmatrix} \right| \\
\left| \begin{pmatrix}
2 \\
0 \\
d - 5
\end{pmatrix} \right| &= \left| \begin{pmatrix}
0 \\
4 \\
d - 8
\end{pmatrix} \right| \\
\sqrt{2^2 + 0^2 + (d - 5)^2} &= \sqrt{ 0^2 + 4^2 + (d - 8)^2} \\
\end{align*} A D O D − O A 1 2 d − − 1 2 5 2 0 d − 5 2 2 + 0 2 + ( d − 5 ) 2 = B D = O D − OB = 1 2 d − 1 − 2 8 = 0 4 d − 8 = 0 2 + 4 2 + ( d − 8 ) 2
d 2 − 10 d + 29 = d 2 − 16 d + 80 − 10 d + 29 = − 16 d + 80 6 d = 51 d = 17 2 ■ \begin{align*}
d^2 - 10 d + 29 &= d^2 - 16 d + 80
\\ - 10 d + 29 &= - 16 d + 80
\\ 6 d &= 51
\\ d &= \frac{17}{2} \; \blacksquare
\end{align*} d 2 − 10 d + 29 − 10 d + 29 6 d d = d 2 − 16 d + 80 = − 16 d + 80 = 51 = 2 17 ■
(c)
D A → = O A → − O D → = ( − 1 2 5 ) − ( 1 2 17 2 ) = ( − 2 0 − 7 2 ) D B → = O B → − O D → = ( 1 − 2 8 ) − ( 1 2 17 2 ) = ( 0 − 4 − 1 2 ) \begin{align*}
\overrightarrow{DA} &= \overrightarrow{OA} - \overrightarrow{OD} \\
&= \begin{pmatrix}
- 1 \\
2 \\
5
\end{pmatrix} - \begin{pmatrix}
1 \\
2 \\
\frac{17}{2}
\end{pmatrix} \\
&= \begin{pmatrix}
- 2 \\
0 \\
- \frac{7}{2}
\end{pmatrix} \\
\overrightarrow{DB} &= \overrightarrow{OB} - \overrightarrow{OD} \\
&= \begin{pmatrix}
1 \\
- 2 \\
8
\end{pmatrix} - \begin{pmatrix}
1 \\
2 \\
\frac{17}{2}
\end{pmatrix} \\
&= \begin{pmatrix}
0 \\
- 4 \\
- \frac{1}{2}
\end{pmatrix}
\end{align*} D A D B = O A − O D = − 1 2 5 − 1 2 2 17 = − 2 0 − 2 7 = OB − O D = 1 − 2 8 − 1 2 2 17 = 0 − 4 − 2 1
D A → ⋅ D B → = ∣ D A → ∣ ∣ D B → ∣ cos ∠ A D B ( − 2 0 − 7 2 ) ⋅ ( 0 − 4 − 1 2 ) = ∣ ( − 2 0 − 7 2 ) ∣ ∣ ( 0 − 4 − 1 2 ) ∣ cos ∠ A D B cos ∠ A D B = 7 4 1 2 65 ( 1 2 65 ) \begin{gather*}
\overrightarrow{DA} \cdot \overrightarrow{DB} = \left| \overrightarrow{DA} \right| \left| \overrightarrow{DB} \right| \cos \angle ADB \\
\begin{pmatrix}
- 2 \\
0 \\
- \frac{7}{2}
\end{pmatrix} \cdot \begin{pmatrix}
0 \\
- 4 \\
- \frac{1}{2}
\end{pmatrix} = \left| \begin{pmatrix}
- 2 \\
0 \\
- \frac{7}{2}
\end{pmatrix} \right| \left| \begin{pmatrix}
0 \\
- 4 \\
- \frac{1}{2}
\end{pmatrix} \right| \cos \angle ADB \\
\cos \angle ADB = \frac{\frac{7}{4}}{\frac{1}{2} \sqrt{65}\left(\frac{1}{2} \sqrt{65}\right)} \\
\end{gather*} D A ⋅ D B = D A D B cos ∠ A D B − 2 0 − 2 7 ⋅ 0 − 4 − 2 1 = − 2 0 − 2 7 0 − 4 − 2 1 cos ∠ A D B cos ∠ A D B = 2 1 65 ( 2 1 65 ) 4 7
∠ A D B = cos − 1 ( 7 4 1 2 65 ( 1 2 65 ) ) = 83. 8 ∘ ( 1 dp ) ■ \begin{align*}
\angle ADB &= \cos^{-1} \left( \frac{\frac{7}{4}}{\frac{1}{2} \sqrt{65}\left(\frac{1}{2} \sqrt{65}\right)} \right) \\
&= 83.8^\circ \; (\textrm{1 dp}) \; \blacksquare
\end{align*} ∠ A D B = cos − 1 ( 2 1 65 ( 2 1 65 ) 4 7 ) = 83. 8 ∘ ( 1 dp ) ■
(d)
Let M M M
be the midpoint of A B . AB. A B .
Since ∣ A D → ∣ = ∣ B D → ∣ , | \overrightarrow{AD} | = | \overrightarrow{BD} |, ∣ A D ∣ = ∣ B D ∣ ,
the line passing through D D D
and M M M
is the perpendicular bisector of A B . AB. A B .
Hence the centre of the circle, P , P, P ,
lies on the line M D . MD. M D .
O M → = O A → + O B → 2 = ( − 1 2 5 ) + ( 1 − 2 8 ) 2 = ( 0 0 13 2 ) \begin{align*}
\overrightarrow{OM} &= \frac{\overrightarrow{OA} + \overrightarrow{OB}}{2} \\
&= \frac{\begin{pmatrix}
- 1 \\
2 \\
5
\end{pmatrix} + \begin{pmatrix}
1 \\
- 2 \\
8
\end{pmatrix}}{2} \\
&= \begin{pmatrix}
0 \\
0 \\
\frac{13}{2}
\end{pmatrix}
\end{align*} OM = 2 O A + OB = 2 − 1 2 5 + 1 − 2 8 = 0 0 2 13
M D → = O D → − O M → = ( 1 2 17 2 ) − ( 0 0 13 2 ) = ( 1 2 2 ) \begin{align*}
\overrightarrow{MD} &= \overrightarrow{OD} - \overrightarrow{OM} \\
&= \begin{pmatrix}
1 \\
2 \\
\frac{17}{2}
\end{pmatrix} - \begin{pmatrix}
0 \\
0 \\
\frac{13}{2}
\end{pmatrix} \\
&= \begin{pmatrix}
1 \\
2 \\
2
\end{pmatrix}
\end{align*} M D = O D − OM = 1 2 2 17 − 0 0 2 13 = 1 2 2
l M D : r = ( 1 2 17 2 ) + λ ( 1 2 2 ) {l_{MD}: \mathbf{r} = \begin{pmatrix}
1 \\
2 \\
\frac{17}{2}
\end{pmatrix} + \lambda \begin{pmatrix}
1 \\
2 \\
2
\end{pmatrix}} l M D : r = 1 2 2 17 + λ 1 2 2
O P → = ( 1 + λ 2 + 2 λ 17 2 + 2 λ ) \begin{equation}
\overrightarrow{OP} = \begin{pmatrix}
1 + \lambda \\
2 + 2 \lambda \\
\frac{17}{2} + 2 \lambda
\end{pmatrix}
\end{equation} OP = 1 + λ 2 + 2 λ 2 17 + 2 λ
∣ D P → ∣ = ∣ A P → ∣ ∣ O P → − O D → ∣ = ∣ O A → − O P → ∣ ∣ ( 1 + λ 2 + 2 λ 17 2 + 2 λ ) − ( 1 2 17 2 ) ∣ = ∣ ( 1 + λ 2 + 2 λ 17 2 + 2 λ ) − ( − 1 2 5 ) ∣ ∣ ( λ 2 λ 2 λ ) ∣ = ∣ ( 2 + λ 2 λ 7 2 + 2 λ ) ∣ λ 2 + ( 2 λ ) 2 + ( 2 λ ) 2 = ( 2 + λ ) 2 + ( 2 λ ) 2 + ( 7 2 + 2 λ ) 2 9 λ 2 = 65 4 + 18 λ + 9 λ 2 \begin{gather*}
| \overrightarrow{DP} | = \left| \overrightarrow{AP} \right| \\
\left| \overrightarrow{OP} - \overrightarrow{OD} \right| = \left| \overrightarrow{OA} - \overrightarrow{OP} \right| \\
\left| \begin{pmatrix}
1 + \lambda \\
2 + 2 \lambda \\
\frac{17}{2} + 2 \lambda
\end{pmatrix} - \begin{pmatrix}
1 \\
2 \\
\frac{17}{2}
\end{pmatrix} \right| = \left| \begin{pmatrix}
1 + \lambda \\
2 + 2 \lambda \\
\frac{17}{2} + 2 \lambda
\end{pmatrix} - \begin{pmatrix}
- 1 \\
2 \\
5
\end{pmatrix} \right| \\
\left| \begin{pmatrix}
λ \\
2 λ \\
2 λ
\end{pmatrix} \right| = \left| \begin{pmatrix}
2 + λ \\
2 λ \\
\frac{7}{2} + 2 λ
\end{pmatrix} \right| \\
\sqrt{ λ^2 + (2 λ)^2 + (2 λ)^2 } = \sqrt{ (2 + λ)^2 + (2 λ)^2 + \left(\frac{7}{2} + 2 λ\right)^2 } \\
9 λ^2 = \frac{65}{4} + 18 λ + 9 λ^2
\end{gather*} ∣ D P ∣ = A P OP − O D = O A − OP 1 + λ 2 + 2 λ 2 17 + 2 λ − 1 2 2 17 = 1 + λ 2 + 2 λ 2 17 + 2 λ − − 1 2 5 λ 2 λ 2 λ = 2 + λ 2 λ 2 7 + 2 λ λ 2 + ( 2 λ ) 2 + ( 2 λ ) 2 = ( 2 + λ ) 2 + ( 2 λ ) 2 + ( 2 7 + 2 λ ) 2 9 λ 2 = 4 65 + 18 λ + 9 λ 2
18 λ + 65 4 = 0 18 λ = − 65 4 λ = − 65 72 \begin{gather*}
18 λ + \frac{65}{4} = 0
\\ 18 λ = - \frac{65}{4}
\\ λ = - \frac{65}{72}
\end{gather*} 18 λ + 4 65 = 0 18 λ = − 4 65 λ = − 72 65 Substituting λ = − 65 72 λ = - \frac{65}{72} λ = − 72 65
into ( 1 ) , (1), ( 1 ) ,
O P → = ( 7 72 7 36 241 36 ) ■ \begin{align*}
\overrightarrow{OP} &= \begin{pmatrix}
\frac{7}{72} \\
\frac{7}{36} \\
\frac{241}{36}
\end{pmatrix} \; \blacksquare
\end{align*} OP = 72 7 36 7 36 241 ■
Question Commentary The first three parts are pretty standard, but the last part is novel and challenging.
For the O Levels A Math syllabus we learnt in coordinate geometry that the centre of circles can be found by
finding the perpendicular bisector of two points on the circle.
However, for a 3D question like this one, finding the
perpendicular bisector is not easy and we will have to observe the earlier result in part (b).
Thereafter, we can use magnitudes to find the final answer as shown above.
An alternative method could be to equate P = ( x , y , z ) P = (x,y,z) P = ( x , y , z )
and set up a system of linear equations. Two equations come from
∣ D P → ∣ = ∣ A P → ∣ = ∣ B P → ∣ \left| \overrightarrow{DP} \right| = \left| \overrightarrow{AP} \right| = \left| \overrightarrow{BP} \right| D P = A P = BP
while the third equation comes from the fact that P P P
lies on plane A B D . ABD. A B D .