2008 H2 Mathematics Paper 1 Question 9

Differentiation I: Tangents and Normals, Parametric Curves

Answers

The graph of y=f(x){y=f(x)} is a horizontal line
f(x)=17(2x+1)2>0{f'(x) = \frac{17}{(2x+1)^2} > 0}
(iva)
(ivb)
Out of syllabus

Full solutions

(i)

f(x)=a(cx+d)c(ax+b)(cx+d)2=acx+adacxbc(cx+d)2=adbc(cx+d)2\begin{align*} f'(x) &= \frac{a(cx+d)-c(ax+b)}{(cx+d)^2} \\ &= \frac{acx+ad-acx-bc}{(cx+d)^2} \\ &= \frac{ad-bc}{(cx+d)^2} \\ \end{align*}
Hence if adbc0,{ad-bc \neq 0,} then f(x)0{f'(x)\neq 0} for all real values of x{x} so the graph of y=f(x){y=f(x)} has no turning points {\blacksquare}

(ii)

If adbc=0,{ad-bc=0, } then f(x)=0{f'(x)=0} for all real values of x{x} so the graph of y=f(x){y=f(x)} is a horizontal line {\blacksquare}

(iii)

a=3,{a=3,} b=7,{b=-7,} c=2,{c=2,} and d=1,{d=1,}
f(x)=3(1)(7)(2)(2x+1)2=17(2x+1)2\begin{align*} f'(x) &= \frac{3(1)-(-7)(2)}{(2x+1)^2} \\ &= \frac{17}{(2x+1)^2} \\ \end{align*}
(2x+1)2{(2x+1)^2} is always positive for all xR,x1{x \in \mathbb{R}, x \neq -1} so f(x)=17(2x+1)2>0{f'(x) = \frac{17}{(2x+1)^2} > 0} so the graph has a positive gradient at all points of the graph {\blacksquare}
(iva)
(ivb)
Out of syllabus