Math Repository
about
topic
al
year
ly
Yearly
2015
P1 Q11
Topical
Tangents
15 P1 Q11
2015 H2 Mathematics Paper 1 Question 11
Differentiation I: Tangents and Normals, Parametric Curves
Answers
(i)
d
y
d
x
=
2
cot
θ
−
tan
θ
{\frac{\mathrm{d}y}{\mathrm{d}x}= 2 \cot \theta - \tan \theta}
d
x
d
y
=
2
cot
θ
−
tan
θ
(ii)
tan
θ
=
2
,
{\tan \theta = \sqrt{2},}
tan
θ
=
2
,
(
2
3
2
3
,
2
3
)
{\left( \frac{2}{3}\sqrt{\frac{2}{3}}, \frac{2}{\sqrt{3}} \right)}
(
3
2
3
2
,
3
2
)
(iii)
0.884
{0.884}
0.884
(iv)
a
=
3
2
{a=\frac{3}{\sqrt{2}}}
a
=
2
3
Full solutions
(i)
d
x
d
t
=
3
sin
2
θ
cos
θ
d
y
d
t
=
6
sin
θ
cos
2
θ
−
3
sin
3
θ
\begin{align*} \frac{\mathrm{d}x}{\mathrm{d}t} &= 3 \sin^2 \theta \cos \theta \\ \frac{\mathrm{d}y}{\mathrm{d}t} &= 6\sin \theta \cos^2 \theta - 3 \sin^3 \theta \\ \end{align*}
d
t
d
x
d
t
d
y
=
3
sin
2
θ
cos
θ
=
6
sin
θ
cos
2
θ
−
3
sin
3
θ
d
y
d
x
=
d
y
d
t
÷
d
x
d
t
=
6
sin
θ
cos
2
θ
−
3
sin
3
θ
3
sin
2
θ
cos
θ
=
2
cot
θ
−
tan
θ
■
\begin{align*} \frac{\mathrm{d}y}{\mathrm{d}x} &= \frac{\mathrm{d}y}{\mathrm{d}t} \div \frac{\mathrm{d}x}{\mathrm{d}t} \\ &= \frac{6\sin \theta \cos^2 \theta - 3 \sin^3 \theta}{3 \sin^2 \theta \cos \theta} \\ &= 2 \cot \theta - \tan \theta \; \blacksquare \end{align*}
d
x
d
y
=
d
t
d
y
÷
d
t
d
x
=
3
sin
2
θ
cos
θ
6
sin
θ
cos
2
θ
−
3
sin
3
θ
=
2
cot
θ
−
tan
θ
■
(ii)
At turning point,
d
y
d
x
=
0
{\displaystyle \frac{\mathrm{d}y}{\mathrm{d}x}=0}
d
x
d
y
=
0
2
cot
θ
−
tan
θ
=
0
tan
θ
=
2
tan
θ
tan
2
θ
=
2
\begin{align*} 2 \cot \theta - \tan \theta &= 0 \\ \tan \theta &= \frac{2}{\tan \theta} \\ \tan^2 \theta &= 2 \end{align*}
2
cot
θ
−
tan
θ
tan
θ
tan
2
θ
=
0
=
tan
θ
2
=
2
Since
0
≤
θ
≤
1
2
π
,
{0 \leq \theta \leq \frac{1}{2}\pi,}
0
≤
θ
≤
2
1
π
,
tan
θ
=
2
\tan \theta = \sqrt{2}
tan
θ
=
2
sin
θ
=
2
3
cos
θ
=
1
3
x
=
sin
3
θ
=
2
3
2
3
y
=
sin
2
θ
cos
θ
=
2
3
3
\begin{align*} \sin \theta &= \sqrt{\frac{2}{3}} \\ \cos \theta &= \frac{1}{\sqrt{3}} \\ x &= \sin^3 \theta \\ &= \frac{2}{3} \sqrt{\frac{2}{3}} \\ y &= \sin^2 \theta \cos \theta \\ &= \frac{2}{3\sqrt{3}} \end{align*}
sin
θ
cos
θ
x
y
=
3
2
=
3
1
=
sin
3
θ
=
3
2
3
2
=
sin
2
θ
cos
θ
=
3
3
2
Exact coordinates of turning point:
(
2
3
2
3
,
2
3
)
■
\left( \frac{2}{3}\sqrt{\frac{2}{3}}, \frac{2}{\sqrt{3}} \right) \; \blacksquare
(
3
2
3
2
,
3
2
)
■
d
2
y
d
x
2
=
d
d
θ
(
d
y
d
x
)
÷
d
x
d
θ
=
−
2
cosec
2
θ
−
sec
2
θ
3
sin
2
θ
cos
θ
<
0
when
tan
θ
=
2
\begin{align*} \frac{\mathrm{d}^{2}y}{\mathrm{d}x^{2}} &= \frac{\mathrm{d}}{\mathrm{d}\theta} \left( \frac{\mathrm{d}y}{\mathrm{d}x} \right) \div \frac{\mathrm{d}x}{\mathrm{d}\theta} \\ &= \frac{-2 \cosec^2 \theta - \sec^2 \theta}{3 \sin^2 \theta \cos \theta} \\ &< 0 \quad \textrm{ when } \tan \theta = \sqrt{2} \\ \end{align*}
d
x
2
d
2
y
=
d
θ
d
(
d
x
d
y
)
÷
d
θ
d
x
=
3
sin
2
θ
cos
θ
−
2
cosec
2
θ
−
sec
2
θ
<
0
when
tan
θ
=
2
Since
d
2
y
d
x
2
<
0
,
{\displaystyle \frac{\mathrm{d}^{2}y}{\mathrm{d}x^{2}} < 0,}
d
x
2
d
2
y
<
0
,
the turning point is a maximum
■
{\blacksquare}
■
(iii)
Area
=
∫
0
1
y
d
x
=
∫
0
1
2
π
3
sin
2
θ
cos
θ
(
3
sin
2
θ
cos
θ
)
d
θ
=
∫
0
1
2
π
39
sin
4
θ
cos
2
θ
d
θ
■
\begin{align*} & \textrm{Area} \\ &= \int_0^1 y \; \mathrm{d}x \\ &= \int_0^{\frac{1}{2}\pi} 3 \sin^2 \theta \cos \theta ( 3 \sin^2 \theta \cos \theta ) \; \mathrm{d} \theta \\ &= \int_0^{\frac{1}{2}\pi} 3 9 \sin^4 \theta \cos^2 \theta \; \mathrm{d} \theta \; \blacksquare \end{align*}
Area
=
∫
0
1
y
d
x
=
∫
0
2
1
π
3
sin
2
θ
cos
θ
(
3
sin
2
θ
cos
θ
)
d
θ
=
∫
0
2
1
π
39
sin
4
θ
cos
2
θ
d
θ
■
Using a GC,
Area
=
0.884
(3 dp)
■
\textrm{Area } = 0.884 \textrm{ (3 dp)} \; \blacksquare
Area
=
0.884
(3 dp)
■
(iv)
x
=
sin
3
θ
y
=
3
sin
2
θ
cos
θ
y
=
a
x
\begin{align} && \quad x &= \sin^3 \theta \\ && \quad y &= 3 \sin^2 \theta \cos \theta \\ && \quad y &= ax \\ \end{align}
x
y
y
=
sin
3
θ
=
3
sin
2
θ
cos
θ
=
a
x
Substituting equations
(
1
)
{(1)}
(
1
)
and
(
2
)
{(2)}
(
2
)
into
(
3
)
,
{(3),}
(
3
)
,
3
sin
2
θ
cos
θ
=
a
sin
3
θ
a
sin
3
θ
sin
2
θ
cos
θ
=
3
tan
θ
=
3
a
■
\begin{align*} 3 \sin^2 \theta \cos \theta &= a \sin^3 \theta \\ \frac{a \sin^3 \theta}{\sin^2 \theta \cos \theta} &= 3 \\ \tan \theta &= \frac{3}{a} \; \blacksquare \end{align*}
3
sin
2
θ
cos
θ
sin
2
θ
cos
θ
a
sin
3
θ
tan
θ
=
a
sin
3
θ
=
3
=
a
3
■
At maximum point,
tan
θ
=
2
.
{\tan \theta = \sqrt{2}. }
tan
θ
=
2
.
Hence
3
a
=
2
a
=
3
2
■
\begin{align*} \frac{3}{a} &= \sqrt{2} \\ a &= \frac{3}{\sqrt{2}} \; \blacksquare \end{align*}
a
3
a
=
2
=
2
3
■
Back to top ▲