Answers
Full solutions
(i)
=∫035πsin2xdx=∫035π21−cos2xdx=[2x−4sin2x]035π=21(35π)−41(sin310π−sin0)=65π+813■
=∫035πcos2xdx=∫035π1−sin2xdx=[x]035π−(65π+813)=35π−(65π+813)=65π−813■
(iia)
∫021πx2sinxdx=[x2(−cosx)]021π−∫021π2x(−cosx)dx=0−0+∫021π2xcosxdx=[2xsinx]021π−∫021π2sinxdx=2(21π)−0+[2cosx]021π=π+2cos21π−2cos0=(π−2) units2■
(iib)
Volume of revolution=π∫021π(x2sinx)2dx=5.391 units3 (3 dp)■