2017 H2 Mathematics Paper 1 Question 5

Differentiation I: Tangents and Normals, Parametric Curves

Answers

a=32,  {a=- \frac{3}{2}, \;}b=32,  {b=\frac{3}{2}, \;}c=7{c=7}
x=1.33{x=-1.33}
x=0.145,  {x=-0.145, \;}x=1.15{x=1.15}

Full solutions

(i)

By the remainder theorem,
13+a(1)2+b(1)+c=823+a(2)2+b(2)+c=1233+a(3)2+b(3)+c=25\begin{align*} 1^3 + a(1)^2 + b(1) + c &= 8 \\ 2^3 + a(2)^2 + b(2) + c &= 12 \\ 3^3 + a(3)^2 + b(3) + c &= 25 \\ \end{align*}
a+b+c=74a+2b+c=49a+3b+c=2\begin{align} && \quad a + b + c &= 7 \\ && \quad 4a + 2b + c &= 4 \\ && \quad 9a + 3b + c &= -2 \\ \end{align}
Solving with a GC,
a=32  b=32  c=7  \begin{align*} a &= - \frac{3}{2} \; \blacksquare \\ b &= \frac{3}{2} \; \blacksquare \\ c &= 7 \; \blacksquare \\ \end{align*}

(ii)

y=x332x2+32x+7dydx=3x23x+32=3(x2x)+32=3((x12)2(12)2)+32=3(x12)2+34\begin{align*} y &= x^3 - \frac{3}{2} x^2 + \frac{3}{2} x + 7 \\ \frac{\mathrm{d}y}{\mathrm{d}x} &= 3 x^2 - 3 x + \frac{3}{2} \\ &= 3 \left( x^2 - x \right) + \frac{3}{2} \\ &= 3 \Bigg( \left(x- \frac{1}{2} \right)^2 - \left( \frac{1}{2} \right)^2 \Bigg) + \frac{3}{2} \\ &= 3 \left(x- \frac{1}{2} \right)^2 + \frac{3}{4} \\ \end{align*}
Since (x12)20{\left(x-\frac{1}{2}\right)^2 \geq 0} for all real values of x,{x,} 3(x12)2+34>0{3 \left(x- \frac{1}{2} \right)^2 + \frac{3}{4} > 0} for all real values of x{x} so the gradient of the curve is always positive {\blacksquare}
Hence the curve is increasing and f(x)=0{f(x)=0} has only one real root
Using a GC, root to the equation f(x)=0:{f(x)=0:}
x=1.33 (3 sf)  x=-1.33 \textrm{ (3 sf)} \; \blacksquare

(iii)

When the tangent is parallel to the line y=2x3,{y=2x-3,}
dydx=23x23x+32=23x23x12=0\begin{align*} \frac{\mathrm{d}y}{\mathrm{d}x} &= 2 \\ 3 x^2 - 3 x + \frac{3}{2} &= 2 \\ 3 x^2 - 3 x - \frac{1}{2} &= 0 \end{align*}
Solving with a GC,
x=0.145 (3 sf)  orx=1.15 (3 sf)  \begin{align*} x &= -0.145 \textrm{ (3 sf)} \; \blacksquare \\ \textrm{or} \quad x &= 1.15 \textrm{ (3 sf)} \; \blacksquare \end{align*}