2018 H2 Mathematics Paper 1 Question 2

Definite Integrals: Areas and Volumes

Answers

x=12{x=\frac{1}{2}} and x=3{x=3}
125π6 units3{ \frac{125\pi}{6} \textrm{ units}^3 }

Full solutions

(i)

3x=72x3=7x2x22x27x+3=0(2x1)(x3)=0\begin{gather*} \frac{3}{x} = 7 - 2x \\ 3 = 7x - 2x^2 \\ 2 x^2 - 7 x + 3 = 0 \\ (2 x - 1)(x - 3) = 0 \end{gather*}
x{x}-coordinates of A{A} and B{B}:
x=12,x=3  x = \frac{1}{2}, \quad x = 3 \; \blacksquare

(ii)

Exact volume generated=π123((72x)2(3x)2)  dx=π123((72x)29x2)  dx=π[16(72x)3+9x]123=π(16(76)3+93+16(71)318)=π(1615+36)=125π6 units3  \begin{align*} & \textrm{Exact volume generated} \\ & = \pi \int_{\frac{1}{2}}^{3} \left( (7-2x)^2 - \left( \frac{3}{x} \right)^2 \right) \; \mathrm{d}x \\ & = \pi \int_{\frac{1}{2}}^{3} \left( (7 - 2 x)^2 - \frac{9}{x^{2}} \right) \; \mathrm{d}x \\ & = \pi \left[ - \frac{1}{6} \left(7 - 2 x\right)^{3} + \frac{9}{x} \right]_{\frac{1}{2}}^{3} \\ &= \pi \left( -\frac{1}{6} (7-6)^3 + \frac{9}{3} + \frac{1}{6} (7-1)^3 - 18 \right) \\ &= \pi \left( -\frac{1}{6} - 15 + 36 \right) \\ &= \frac{125\pi}{6} \textrm{ units}^3 \; \blacksquare \\ \end{align*}