Math Repository
about
topic
al
year
ly
Yearly
2018
P1 Q2
Topical
Areas & Volumes
18 P1 Q2
2018 H2 Mathematics Paper 1 Question 2
Definite Integrals: Areas and Volumes
Answers
(i)
x
=
1
2
{x=\frac{1}{2}}
x
=
2
1
and
x
=
3
{x=3}
x
=
3
(ii)
125
π
6
units
3
{ \frac{125\pi}{6} \textrm{ units}^3 }
6
125
π
units
3
Full solutions
(i)
3
x
=
7
−
2
x
3
=
7
x
−
2
x
2
2
x
2
−
7
x
+
3
=
0
(
2
x
−
1
)
(
x
−
3
)
=
0
\begin{gather*} \frac{3}{x} = 7 - 2x \\ 3 = 7x - 2x^2 \\ 2 x^2 - 7 x + 3 = 0 \\ (2 x - 1)(x - 3) = 0 \end{gather*}
x
3
=
7
−
2
x
3
=
7
x
−
2
x
2
2
x
2
−
7
x
+
3
=
0
(
2
x
−
1
)
(
x
−
3
)
=
0
x
{x}
x
-coordinates of
A
{A}
A
and
B
{B}
B
:
x
=
1
2
,
x
=
3
■
x = \frac{1}{2}, \quad x = 3 \; \blacksquare
x
=
2
1
,
x
=
3
■
(ii)
Exact volume generated
=
π
∫
1
2
3
(
(
7
−
2
x
)
2
−
(
3
x
)
2
)
d
x
=
π
∫
1
2
3
(
(
7
−
2
x
)
2
−
9
x
2
)
d
x
=
π
[
−
1
6
(
7
−
2
x
)
3
+
9
x
]
1
2
3
=
π
(
−
1
6
(
7
−
6
)
3
+
9
3
+
1
6
(
7
−
1
)
3
−
18
)
=
π
(
−
1
6
−
15
+
36
)
=
125
π
6
units
3
■
\begin{align*} & \textrm{Exact volume generated} \\ & = \pi \int_{\frac{1}{2}}^{3} \left( (7-2x)^2 - \left( \frac{3}{x} \right)^2 \right) \; \mathrm{d}x \\ & = \pi \int_{\frac{1}{2}}^{3} \left( (7 - 2 x)^2 - \frac{9}{x^{2}} \right) \; \mathrm{d}x \\ & = \pi \left[ - \frac{1}{6} \left(7 - 2 x\right)^{3} + \frac{9}{x} \right]_{\frac{1}{2}}^{3} \\ &= \pi \left( -\frac{1}{6} (7-6)^3 + \frac{9}{3} + \frac{1}{6} (7-1)^3 - 18 \right) \\ &= \pi \left( -\frac{1}{6} - 15 + 36 \right) \\ &= \frac{125\pi}{6} \textrm{ units}^3 \; \blacksquare \\ \end{align*}
Exact volume generated
=
π
∫
2
1
3
(
(
7
−
2
x
)
2
−
(
x
3
)
2
)
d
x
=
π
∫
2
1
3
(
(
7
−
2
x
)
2
−
x
2
9
)
d
x
=
π
[
−
6
1
(
7
−
2
x
)
3
+
x
9
]
2
1
3
=
π
(
−
6
1
(
7
−
6
)
3
+
3
9
+
6
1
(
7
−
1
)
3
−
18
)
=
π
(
−
6
1
−
15
+
36
)
=
6
125
π
units
3
■
Back to top ▲