Math Repository
about
topic
al
year
ly
Yearly
2018
P1 Q7
Topical
Tangents
18 P1 Q7
2018 H2 Mathematics Paper 1 Question 7
Differentiation I: Tangents and Normals, Parametric Curves
Answers
(ii)
N
(
−
1
17
,
0
)
{N \left( - \frac{1}{17}, 0 \right)}
N
(
−
17
1
,
0
)
Full solutions
(i)
x
2
−
4
y
2
x
2
+
x
y
2
=
1
2
2
x
2
−
8
y
2
=
x
2
+
x
y
2
\begin{gather*} \frac{x^2-4y^2}{x^2+xy^2} = \frac{1}{2} \\ 2x^2 - 8y^2 = x^2 + xy^2 \\ \end{gather*}
x
2
+
x
y
2
x
2
−
4
y
2
=
2
1
2
x
2
−
8
y
2
=
x
2
+
x
y
2
x
2
−
8
y
2
=
x
y
2
\begin{equation} x^2 - 8y^2 = xy^2 \end{equation}
x
2
−
8
y
2
=
x
y
2
Differentiating implicitly w.r.t.
x
,
{x,}
x
,
2
x
−
16
y
d
y
d
x
=
y
2
+
2
x
y
d
y
d
x
d
y
d
x
(
2
x
y
+
16
y
)
=
2
x
−
y
2
\begin{align*} 2x - 16y \frac{\mathrm{d}y}{\mathrm{d}x} = y^2 + 2xy\frac{\mathrm{d}y}{\mathrm{d}x} \\ \frac{\mathrm{d}y}{\mathrm{d}x} \left( 2xy+16y \right) = 2x-y^2 \end{align*}
2
x
−
16
y
d
x
d
y
=
y
2
+
2
x
y
d
x
d
y
d
x
d
y
(
2
x
y
+
16
y
)
=
2
x
−
y
2
d
y
d
x
=
2
x
−
y
2
2
x
y
+
16
y
■
\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{2x-y^2}{2xy+16y}\;\blacksquare
d
x
d
y
=
2
x
y
+
16
y
2
x
−
y
2
■
(ii)
Substituting
x
=
1
{x=1}
x
=
1
into
(
1
)
,
{(1),}
(
1
)
,
1
−
8
y
2
=
y
2
9
y
2
=
1
y
=
±
1
3
\begin{gather*} 1 - 8y^2 = y^2 \\ 9y^2 = 1 \\ y = \pm \frac{1}{3} \end{gather*}
1
−
8
y
2
=
y
2
9
y
2
=
1
y
=
±
3
1
When
x
=
1
,
y
=
1
3
,
{x=1, y=\frac{1}{3},}
x
=
1
,
y
=
3
1
,
d
y
d
x
=
2
(
1
)
−
1
9
2
(
1
)
(
1
3
)
+
16
(
1
3
)
=
17
54
\begin{align*} \frac{\mathrm{d}y}{\mathrm{d}x} &= \frac{2(1)-\frac{1}{9}}{2(1)\left(\frac{1}{3}\right)+16\left(\frac{1}{3}\right)} \\ &= \frac{17}{54} \end{align*}
d
x
d
y
=
2
(
1
)
(
3
1
)
+
16
(
3
1
)
2
(
1
)
−
9
1
=
54
17
When
x
=
1
,
y
=
−
1
3
,
{x=1, y=-\frac{1}{3},}
x
=
1
,
y
=
−
3
1
,
d
y
d
x
=
2
(
1
)
−
1
9
2
(
1
)
(
−
1
3
)
+
16
(
−
1
3
)
=
−
17
54
\begin{align*} \frac{\mathrm{d}y}{\mathrm{d}x} &= \frac{2(1)-\frac{1}{9}}{2(1)\left(-\frac{1}{3}\right)+16\left(-\frac{1}{3}\right)} \\ &= - \frac{17}{54} \end{align*}
d
x
d
y
=
2
(
1
)
(
−
3
1
)
+
16
(
−
3
1
)
2
(
1
)
−
9
1
=
−
54
17
Equations of tangents:
y
−
1
3
=
17
54
(
x
−
1
)
y
+
1
3
=
−
17
54
(
x
−
1
)
\begin{align} && \quad y - \frac{1}{3} &= \frac{17}{54} \left( x - 1 \right) \\ && \quad y + \frac{1}{3} &= - \frac{17}{54} \left( x - 1 \right) \\ \end{align}
y
−
3
1
y
+
3
1
=
54
17
(
x
−
1
)
=
−
54
17
(
x
−
1
)
Solving with a GC, exact coordinates of
N
:
{N:}
N
:
N
(
−
1
17
,
0
)
■
N \left( - \frac{1}{17}, 0 \right) \; \blacksquare
N
(
−
17
1
,
0
)
■
Back to top ▲