2019 H2 Mathematics Paper 1 Question 10

Definite Integrals: Areas and Volumes

Answers

Line of symmetry: y=0{y=0}
θ=0,π, or 2π{\theta = 0, \pi, \textrm{ or } 2 \pi}
θ1=0,  θ2=π{\theta_1 = 0, \; \theta_2 = \pi}
6a2π units2{6 a^2 \pi \textrm{ units}^2}

Full solutions

(i)

Line of symmetry:
y=0  y=0 \; \blacksquare

(ii)

When C{C} meets the x-{x\textrm{-}}axis, y=0{y=0}
a(2sinθsin2θ)=02sinθ2sinθcosθ=0sinθ(1cosθ)=0\begin{gather*} a(2 \sin \theta - \sin 2 \theta) = 0 \\ 2 \sin \theta - 2 \sin \theta \cos \theta = 0 \\ \sin \theta (1 - \cos \theta) = 0 \end{gather*}
sinθ=0 or cosθ=1θ=0,π,2πθ=0,2π\begin{align*} \sin \theta &= 0 & \textrm{ or } && \cos \theta &= 1 \\ \theta &= 0, \pi, 2\pi &&& \theta &= 0, 2\pi \end{align*}
θ=0,π, or 2π  \therefore \theta = 0, \pi, \textrm{ or } 2 \pi \; \blacksquare

(iii)

dxdθ=a(2sinθ+2sin2θ)\frac{\mathrm{d}x}{\mathrm{d}\theta} = a(-2\sin \theta + 2 \sin 2 \theta)
Area=3aay  dx=π0a(2sinθsin2θ)  a(2sinθ+2sin2θ)  dθ=π0a2(4sin2θ+6sinθsin2θ2sin22θ)  dθ=0πa2(4sin2θ6sinθsin2θ+2sin22θ)  dθ  \begin{align*} & \textrm{Area} \\ & = \int_{-3a}^{a} y \; \mathrm{d}x \\ & = \int_{\pi}^{0} a ( 2 \sin \theta - \sin 2 \theta ) \; a(-2\sin \theta + 2 \sin 2 \theta) \; \mathrm{d}\theta \\ & = \int_{\pi}^{0} a^2 ( -4 \sin^2 \theta + 6 \sin \theta \sin 2 \theta - 2 \sin^2 2 \theta) \; \mathrm{d}\theta \\ & = \int_{0}^{\pi} a^2 ( 4 \sin^2 \theta - 6 \sin \theta \sin 2 \theta + 2 \sin^2 2 \theta) \; \mathrm{d}\theta \; \blacksquare \end{align*}

(iv)

Total area enclosed by C=20πa2(4sin2θ6sinθsin2θ+2sin22θ)  dθ=2a20π(22cos2θ+3(cos3θcosθ)+1cos4θ)  dθ=2a20π(32cos2θ+3cos3θ3cosθcos4θ)  dθ=2a2[3θsin2θ+sin3θ3sinθ14sin4θ]0π=6a2π units2  \begin{align*} & \textrm{Total area enclosed by } C \\ & = 2 \int_{0}^{\pi} a^2 ( 4 \sin^2 \theta - 6 \sin \theta \sin 2 \theta + 2 \sin^2 2 \theta) \; \mathrm{d}\theta \\ & = 2a^2 \int_{0}^{\pi} \left( 2-2\cos 2\theta +3 (\cos 3 \theta - \cos \theta ) + 1 - \cos 4 \theta \right) \; \mathrm{d}\theta \\ & = 2a^2 \int_{0}^{\pi} \left( 3 - 2\cos 2\theta +3 \cos 3 \theta - 3\cos \theta - \cos 4 \theta \right) \; \mathrm{d}\theta \\ & = 2a^2 \left[ 3\theta - \sin 2\theta + \sin 3 \theta - 3 \sin \theta - \frac{1}{4} \sin 4 \theta \right]_{0}^{\pi} \\ & = 6 a^2 \pi \textrm{ units}^2 \; \blacksquare \end{align*}