2023 H2 Mathematics Paper 1 Question 10

Differential Equations (DEs)

Answers

d ⁣Md ⁣t=k(C30M).\frac{\operatorname{d}\!M}{\operatorname{d}\!t} = k \left( C - 30M \right).
3300.3300.
M=88+22e30kt. M = 88 + 22 \operatorname{e}^{-30kt}.
51.51.
(ei)
q1-diagram
(eii)
0<C<2400.0 < C < 2400.

Full solutions

(a)

Since the rate of change of mass is proportional to the difference between energy intake and energy expenditure, we have

d ⁣Md ⁣t=k(intakeexpenditure)=k(C30M)  \begin{align*} \frac{\operatorname{d}\!M}{\operatorname{d}\!t} &= k \left( \text{intake} - \text{expenditure} \right) \\ &= k \left( C - 30M \right) \; \blacksquare \end{align*}

(b)

To maintain his mass,

d ⁣Md ⁣t=0k(C30M)=0C=30M=30(110)=3300  \begin{align*} \frac{\operatorname{d}\!M}{\operatorname{d}\!t} &= 0 \\ k \left( C - 30M \right) &= 0 \\ C &= 30 M \\ &= 30(110) \\ &= 3300 \; \blacksquare \end{align*}

(c)

d ⁣Md ⁣t=k(0.8C30M)d ⁣Md ⁣t=k(264030M)188MdM=30kdtln88M=30kt+c88M=Ae30kt\begin{gather*} \frac{\operatorname{d}\!M}{\operatorname{d}\!t} = k \left( 0.8C - 30M \right) \\ \frac{\operatorname{d}\!M}{\operatorname{d}\!t} = k \left( 2640 - 30M \right) \\ \int \frac{1}{88 - M} \, \mathrm{d}M = \int 30 k \, \mathrm{d}t \\ - \ln | 88 - M | = 30kt + c \\ 88 - M = A \operatorname{e}^{-30kt} \end{gather*}

When t=0,t = 0, M=110,M = 110,

88110=Ae0A=22\begin{gather*} 88-110 = A \operatorname{e}^0 \\ A = - 22 \end{gather*}
88M=22e30ktM=88+22e30kt  \begin{gather*} 88 - M = - 22 \operatorname{e}^{-30kt} \\ M = 88 + 22 \operatorname{e}^{-30kt} \; \blacksquare \end{gather*}

(d)

When t=75,t = 75, M=100,M = 100,

100=88+22e30(75)ke2250k=1222k=ln6112250=0.00026939\begin{align*} 100 &= 88 + 22 \operatorname{e}^{-30(75)k} \\ \operatorname{e}^{-2250k} &= \frac{12}{22} \\ k &= \frac{\ln \frac{6}{11}}{-2250} \\ &= 0.00026939 \end{align*}

When his mass falls below 96,96,

88+22e30kt<96e30kt<82230kt<ln822t>ln82230kt>125.17\begin{align*} 88 + 22 \operatorname{e}^{-30kt} &< 96 \\ \operatorname{e}^{-30kt} &< \frac{8}{22} \\ -30kt &< \ln \frac{8}{22} \\ t &> \frac{\ln \frac{8}{22}}{-30k} \\ t &> 125.17 \end{align*}
Additional days required=12675=51 days  \begin{align*} & \text{Additional days required} \\ & = 126 - 75 \\ & = 51 \text{ days} \; \blacksquare \end{align*}

(ei)
q1-diagram

Since e30kt>0 \operatorname{e}^{-30kt} > 0 for all real values of t,t,

M=88+22e30kt>88\begin{align*} M &= 88 + 22 \operatorname{e}^{-30kt} \\ &> 88 \end{align*}

Hence Andrew cannot achieve a mass of 80 kg  80 \text{ kg} \; \blacksquare

(eii)

For Andrew to achieve a mass of 80 kg,80 \text{ kg},

C30M<0C<30MC<30(80)C<2400\begin{gather*} C - 30M &< 0 \\ C &< 30M \\ C &< 30(80) \\ C &< 2400 \end{gather*}
0<C<2400  { 0 < C < 2400 \; \blacksquare }