2022 H2 Mathematics Paper 2 Question 5

Definite Integrals: Areas and Volumes

Answers

13πh2(3rh).{\frac{1}{3}\pi h^2 (3r-h).}
p=3.{p = 3.}
846π cm3.{846 \pi \textrm{ cm}^3.}

Full solutions

(a)

Volume=πrhrx2  dy=πrhrr2y2  dy=π[r2y13y3]rhr=π(r313r3(r2(rh)13(rh)3))=π(23r3r3+r2h+13(r33r2h+3rh2h3))=π(13r3+r2h+13r3r2h+rh213h3)=π(rh213h3)=13πh2(3rh)  \begin{align*} &\textrm{Volume} \\ &= \pi \int_{r-h}^r x^2 \; \mathrm{d}y \\ &= \pi \int_{r-h}^r r^2 - y^2 \; \mathrm{d}y \\ &= \pi \left[ r^2y - \frac{1}{3} y^3 \right]_{r-h}^r \\ &= \pi \left( r^3 - \frac{1}{3} r^3 - \left( r^2(r-h) - \frac{1}{3}(r-h)^3 \right)\right) \\ &= \pi \left( \frac{2}{3}r^3 - r^3 + r^2h + \frac{1}{3}\left(r^3 - 3r^2h + 3rh^2 - h^3 \right)\right) \\ &= \pi \left( -\frac{1}{3}r^3 + r^2h + \frac{1}{3}r^3 - r^2h + rh^2 - \frac{1}{3}h^3 \right) \\ &= \pi \left( rh^2 - \frac{1}{3}h^3 \right) \\ &= \frac{1}{3}\pi h^2 (3r-h) \; \blacksquare \end{align*}

(b)

Volume of caps=13πp2(3(15)p)+13π(3p)2(3(15)3p)=13πp2(45p+9(453p))=13πp2(45028p)\begin{align*} & \textrm{Volume of caps} \\ &= \frac{1}{3}\pi p^2 \left( 3(15) - p \right) + \frac{1}{3}\pi (3p)^2 \left( 3(15) - 3p \right) \\ &= \frac{1}{3} \pi p^2 \left( 45 - p + 9(45-3p) \right) \\ &= \frac{1}{3} \pi p^2 \left( 450 - 28 p \right) \end{align*}
13πp2(45028p)=43π(15)33402π450p228p3=329428p3450p2+3294=014p3225p2+1647=0  \begin{gather*} \frac{1}{3} \pi p^2 \left( 450 - 28 p \right) = \frac{4}{3}\pi (15)^3 - 3402 \pi \\ 450 p^2 - 28 p^3 = 3294 \\ 28 p^3 - 450 p^2 + 3294 = 0 \\ 14 p^3 - 225 p^2 + 1647 = 0 \; \blacksquare \end{gather*}
From GC,
p=2.52 (N/A),p=15.6 (N/A) or p=3  \begin{align*} p &= -2.52 \textrm{ (N/A)}, \\ p &= 15.6 \textrm{ (N/A)} \textrm{ or } \\ p &= 3 \; \blacksquare \end{align*}

(c)

Volume=13π(3p)2(3r3p)13πp2(3rp)=846π cm3  \begin{align*} &\textrm{Volume} \\ &= \frac{1}{3} \pi (3p)^2 (3r - 3p) - \frac{1}{3} \pi p^2 (3r - p) \\ &= 846 \pi \textrm{ cm}^3 \; \blacksquare \end{align*}

Question Commentary

In part (a) of the question, we have to be careful that we want to rotate about the y{y}-axis so we have to use the appropriate volume of integration formula.

The effective way for part (b) is to use the result from (a), replacing h{h} with p{p} and 3p{3p} and subtracting them from the entire sphere.

Thereafter, we should use our graphing calculator to solve the cubic equation, rejecting any negative answers and answers more than 15.{15.}

Part (c) is tricky and involves figuring out how the three conditions provided translates to the picture. It involves shifting the 3p{3p} distance: instead of measuring this length from the bottom as in (b), we now measure a length of 3p{3p} from the top of the sphere. Once we figure this out the calculation is a straightforward application of the formula derived in (a).