Math Repository
about
topic
al
year
ly
Yearly
2008
P2 Q2
Topical
Areas & Volumes
08 P2 Q2
2008 H2 Mathematics Paper 2 Question 2
Definite Integrals: Areas and Volumes
Answers
(i)
0.999
units
2
{0.999 \textrm{ units}^2}
0.999
units
2
(ii)
4
15
π
units
3
{\frac{4}{15} \pi \textrm{ units}^3}
15
4
π
units
3
(iii)
x
=
2
3
{x=\frac{2}{3}}
x
=
3
2
Full solutions
(i)
Area of
R
=
2
∫
0
1
x
1
−
x
d
x
=
0.999
units
2
(3 sf)
■
\begin{align*} & \textrm{Area of } R \\ & = 2 \int_0^1 \sqrt{x\sqrt{1-x}} \; \mathrm{d}x \\ & = 0.999 \textrm{ units}^2 \textrm{ (3 sf)} \; \blacksquare \end{align*}
Area of
R
=
2
∫
0
1
x
1
−
x
d
x
=
0.999
units
2
(3 sf)
■
(ii)
d
u
d
x
=
−
1
\frac{\mathrm{d}u}{\mathrm{d}x} = -1
d
x
d
u
=
−
1
When
x
=
0
,
{x=0, }
x
=
0
,
u
=
1
{u = 1}
u
=
1
When
x
=
1
,
{x=1, }
x
=
1
,
u
=
0
{u = 0}
u
=
0
Volume obtained
=
π
∫
0
1
x
1
−
x
d
x
=
π
∫
1
0
(
1
−
u
)
u
(
−
1
)
d
u
=
π
∫
0
1
(
1
−
u
)
u
d
u
=
π
∫
0
1
(
u
1
2
−
u
3
2
)
d
u
=
π
[
2
3
u
3
2
−
2
5
u
5
2
]
0
1
=
π
(
2
3
−
2
5
)
=
4
15
π
units
3
■
\begin{align*} & \textrm{Volume obtained } \\ & = \pi \int_0^1 x \sqrt{1-x} \; \mathrm{d}x \\ & = \pi \int_1^0 (1-u) \sqrt{u} (-1) \; \mathrm{d}u \\ & = \pi \int_0^1 (1-u) \sqrt{u} \; \mathrm{d}u \\ & = \pi \int_0^1 \left( u^{\frac{1}{2}} - u^{\frac{3}{2}} \right) \; \mathrm{d}u \\ & = \pi \left[ \frac{2}{3} u^{\frac{3}{2}} - \frac{2}{5} u^{\frac{5}{2}} \right]_0^1 \\ & = \pi \left( \frac{2}{3} - \frac{2}{5} \right) \\ & = \frac{4}{15} \pi \textrm{ units}^3 \; \blacksquare \end{align*}
Volume obtained
=
π
∫
0
1
x
1
−
x
d
x
=
π
∫
1
0
(
1
−
u
)
u
(
−
1
)
d
u
=
π
∫
0
1
(
1
−
u
)
u
d
u
=
π
∫
0
1
(
u
2
1
−
u
2
3
)
d
u
=
π
[
3
2
u
2
3
−
5
2
u
2
5
]
0
1
=
π
(
3
2
−
5
2
)
=
15
4
π
units
3
■
(iii)
y
2
=
x
1
−
x
y
4
=
x
2
(
1
−
x
)
y
4
=
x
2
−
x
3
4
y
3
d
y
d
x
=
2
x
−
3
x
2
\begin{gather*} y^2 = x \sqrt{1-x} \\ y^4 = x^2 (1-x) \\ y^4 = x^2 - x^3 \\ 4y^3 \frac{\mathrm{d}y}{\mathrm{d}x} = 2x - 3x^2 \\ \end{gather*}
y
2
=
x
1
−
x
y
4
=
x
2
(
1
−
x
)
y
4
=
x
2
−
x
3
4
y
3
d
x
d
y
=
2
x
−
3
x
2
At maximum point,
d
y
d
x
=
0
{\displaystyle \frac{\mathrm{d}y}{\mathrm{d}x} = 0}
d
x
d
y
=
0
2
x
−
3
x
2
=
0
x
(
2
−
3
x
)
=
0
x
=
2
3
■
or
x
=
0
(NA)
\begin{gather*} 2x - 3x^2 = 0 \\ x(2-3x) = 0 \\ x = \frac{2}{3} \; \blacksquare \textrm{ or } x = 0 \textrm{ (NA)} \end{gather*}
2
x
−
3
x
2
=
0
x
(
2
−
3
x
)
=
0
x
=
3
2
■
or
x
=
0
(NA)
Back to top ▲