Math Repository
about
topic
al
year
ly
Yearly
2008
P1 Q1
Topical
Areas & Volumes
08 P1 Q1
2008 H2 Mathematics Paper 1 Question 1
Definite Integrals: Areas and Volumes
Answers
a
=
81
4
3
≈
2.73
{a = \sqrt[3]{\frac{81}{4}} \approx 2.73}
a
=
3
4
81
≈
2.73
Full solutions
x
=
y
x=\sqrt{y}
x
=
y
∫
a
4
y
d
y
=
∫
0
1
x
2
d
x
[
2
3
y
3
2
]
a
4
=
[
1
3
x
3
]
1
2
2
3
(
4
3
2
−
a
3
2
)
=
1
3
(
2
3
−
1
3
)
2
3
(
8
−
a
3
2
)
=
7
3
8
−
a
3
2
=
7
2
a
3
2
=
9
2
a
=
81
4
3
■
\begin{align*} \int_a^4 \sqrt{y} \; \mathrm{d}y & = \int_0^1 x^2 \; \mathrm{d}x \\ \left[ \frac{2}{3} y^{\frac{3}{2}} \right]_a^4 &= \left[ \frac{1}{3} x^3 \right]_1^2 \\ \frac{2}{3} \left( 4^{\frac{3}{2}} - a^{\frac{3}{2}} \right) &= \frac{1}{3} \left( 2^3 - 1^3 \right) \\ \frac{2}{3} \left( 8 - a^{\frac{3}{2}} \right) &= \frac{7}{3} \\ 8 - a^{\frac{3}{2}} &= \frac{7}{2} \\ a^{\frac{3}{2}} &= \frac{9}{2} \\ a &= \sqrt[3]{\frac{81}{4}} \; \blacksquare \end{align*}
∫
a
4
y
d
y
[
3
2
y
2
3
]
a
4
3
2
(
4
2
3
−
a
2
3
)
3
2
(
8
−
a
2
3
)
8
−
a
2
3
a
2
3
a
=
∫
0
1
x
2
d
x
=
[
3
1
x
3
]
1
2
=
3
1
(
2
3
−
1
3
)
=
3
7
=
2
7
=
2
9
=
3
4
81
■
Back to top ▲