2023 H2 Mathematics Paper 1 Question 4

Integration Techniques

Answers

sin(p+q)x2(p+q)+sin(pq)x2(pq)+C.{{\frac{\sin (p+q)x}{2(p+q)} + \frac{\sin (p-q)x}{2(p-q)} + C.}}
xsinnxn+cosnxn2+c.{{\frac{x \sin nx}{n} + \frac{\cos nx}{n^2} + c.}}
k=2{{k = -2}} or k=0.{{k = 0.}}
π4.{{\frac{\pi}{4}.}}

Full solutions

(a)

cospxcosqx  dx=12(cos(p+q)x+cos(pq)x)  dx=sin(p+q)x2(p+q)+sin(pq)x2(pq)+C  \begin{align*} & \int \cos px \cos qx \; \mathrm{d}x \\ & = \int \frac{1}{2} \left( \cos (p+q)x + \cos (p-q)x \right) \; \mathrm{d}x \\ & = \frac{\sin (p+q)x}{2(p+q)} + \frac{\sin (p-q)x}{2(p-q)} + C \; \blacksquare \end{align*}

(b)

xcosnx  dx=xsinnxn(1)sinnxn  dx=xsinnxn+cosnxn2+c  \begin{align*} & \int x \cos nx \; \mathrm{d}x \\ & = x \frac{\sin nx}{n} - \int (1) \frac{\sin nx}{n} \; \mathrm{d}x \\ & = \frac{x \sin nx}{n} + \frac{\cos nx}{n^2} + c \; \blacksquare \end{align*}

(c)

0πxcosnx  dx=[xsinnxn+cosnxn2]0π=πsinnπn+cosnπn20cos0n2=cosnπn21n2={2n2if n is odd0if n is even\begin{align*} & \int_0^\pi x \cos nx \; \mathrm{d}x \\ & = \left[ \frac{x \sin nx}{n} + \frac{\cos nx}{n^2} \right]_0^\pi \\ & = \frac{\pi \sin n\pi}{n} + \frac{\cos n\pi}{n^2} - 0 - \frac{\cos 0}{n^2} \\ &= \frac{\cos n\pi}{n^2} - \frac{1}{n^2} \\ &= \begin{cases} - \frac{2}{n^2} & \text{if } n \text{ is odd} \\ 0 & \text{if } n \text{ is even} \end{cases} \end{align*}
k=2  ork=0  {k = -2 \; \blacksquare \quad \text{or} \quad k = 0 \; \blacksquare }

(d)

0π2xcos2x  dx=0π4xcos2x  dxπ4π2xcos2x  dx=[xsin2x2+cos2x4]0π4[xsin2x2+cos2x4]π4π2=π4sinπ22+cosπ24014(π2sinπ2+cosπ4π4sinπ22cosπ24)=π814+14+π8=π4  \begin{align*} & \int_0^{\frac{\pi}{2}} \left| x \cos 2x \right| \; \mathrm{d}x \\ & = \int_0^{\frac{\pi}{4}} \left| x \cos 2x \right| \; \mathrm{d}x - \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \left| x \cos 2x \right| \; \mathrm{d}x \\ & = \left[ \frac{x \sin 2x}{2} + \frac{\cos 2x}{4} \right]_0^{\frac{\pi}{4}} - \left[ \frac{x \sin 2x}{2} + \frac{\cos 2x}{4} \right]_{\frac{\pi}{4}}^{\frac{\pi}{2}} \\ & = \frac{\frac{\pi}{4} \sin \frac{\pi}{2}}{2} + \frac{\cos \frac{\pi}{2}}{4} - 0 - \frac{1}{4} \\ & \qquad - \left( \frac{\frac{\pi}{2} \sin \pi}{2} + \frac{\cos \pi}{4} - \frac{\frac{\pi}{4} \sin \frac{\pi}{2}}{2} - \frac{\cos \frac{\pi}{2}}{4} \right) \\ & = \frac{\pi}{8} - \frac{1}{4} + \frac{1}{4} + \frac{\pi}{8} \\ & = \frac{\pi}{4}\; \blacksquare \end{align*}

Question Commentary

This question is a mishmash of integration techniques involving trigonometric functions.

Part (a) uses the reverse of the factor formula, last seen just last year in 2022 P2 Q1, while (b) involves integration by parts, last seen in 2020 P1 Q7.

The last step of part (c) involves odd and even considerations last seen in 2016 P2 Q2, while (d) is about using the splitting of limits to tackle integration involving the modulus function.