2023 H2 Mathematics Paper 2 Question 2

Maclaurin Series

Answers

d3 ⁣yd ⁣x3=2(d2 ⁣yd ⁣x2)(d ⁣yd ⁣x).{{\frac{\operatorname{d^3}\!y}{\operatorname{d}\!x^3} = 2 \left( \frac{\operatorname{d^2}\!y}{\operatorname{d}\!x^2} \right) \left( \frac{\operatorname{d}\!y}{\operatorname{d}\!x} \right).}}
y=12x2+112x4+{{y = \frac{1}{2} x^2 + \frac{1}{12} x^4 + \dotsb}}
116π2+11536π4.{{\frac{1}{16} \pi^2 + \frac{1}{1536} \pi^4.}}
0.005219.{{0.005219.}}

Full solutions

(a)

y=lnsecxey=secx\begin{gather*} y = \ln \sec x \\ \mathrm{e}^y = \sec x \end{gather*}

Differentiating wrt x,{{x,}}

d ⁣yd ⁣xey=secxtanxd ⁣yd ⁣xey=eytanxd ⁣yd ⁣x=tanx\begin{gather*} \frac{\operatorname{d}\!y}{\operatorname{d}\!x} \mathrm{e}^y = \sec x \tan x \\ \frac{\operatorname{d}\!y}{\operatorname{d}\!x} \mathrm{e}^y = \mathrm{e}^y \tan x \\ \frac{\operatorname{d}\!y}{\operatorname{d}\!x} = \tan x \\ \end{gather*}

Differentiating wrt x,{{x,}}

d2 ⁣yd ⁣x2=sec2x=tan2x+1=(d ⁣yd ⁣x)2+1\begin{align*} \frac{\operatorname{d^2}\!y}{\operatorname{d}\!x^2} &= \sec^2 x \\ &= \tan^2 x + 1 \\ &= \left( \frac{\operatorname{d}\!y}{\operatorname{d}\!x} \right)^2 + 1 \end{align*}

Differentiating wrt x,{{x,}}

d3 ⁣yd ⁣x3=2(d2 ⁣yd ⁣x2)(d ⁣yd ⁣x)  \begin{align*} \frac{\operatorname{d^3}\!y}{\operatorname{d}\!x^3} &= 2 \left( \frac{\operatorname{d^2}\!y}{\operatorname{d}\!x^2} \right) \left( \frac{\operatorname{d}\!y}{\operatorname{d}\!x} \right) \; \blacksquare \end{align*}

(b)

Differentiating wrt x,{{x,}}

d4 ⁣yd ⁣x4=2(d3 ⁣yd ⁣x3)(d ⁣yd ⁣x)+2(d2 ⁣yd ⁣x2)2\begin{align*} \frac{\operatorname{d^4}\!y}{\operatorname{d}\!x^4} &= 2 \left( \frac{\operatorname{d^3}\!y}{\operatorname{d}\!x^3} \right) \left( \frac{\operatorname{d}\!y}{\operatorname{d}\!x} \right) + 2 \left( \frac{\operatorname{d^2}\!y}{\operatorname{d}\!x^2} \right)^2 \end{align*}

When x=0,{{x=0,}}

y=lnsec0=0d ⁣yd ⁣x=tan0=0d2 ⁣yd ⁣x2=sec20=1d3 ⁣yd ⁣x3=2(1)(0)=0d4 ⁣yd ⁣x4=2(0)(0)+2(1)2=2\begin{align*} y &= \ln \sec 0 \\ &= 0 \\ \frac{\operatorname{d}\!y}{\operatorname{d}\!x} &= \tan 0 \\ &= 0 \\ \frac{\operatorname{d^2}\!y}{\operatorname{d}\!x^2} &= \sec^2 0 \\ &= 1 \\ \frac{\operatorname{d^3}\!y}{\operatorname{d}\!x^3} &= 2 \left( 1 \right) \left( 0 \right) \\ &= 0 \\ \frac{\operatorname{d^4}\!y}{\operatorname{d}\!x^4} &= 2 \left( 0 \right) \left( 0 \right) + 2 \left( 1 \right)^2 \\ &= 2 \end{align*}

Maclaurin expansion of y:{{y:}}

y=0+0x+12!x2+03!x3+24!x4+=12x2+112x4+  \begin{align*} y &= 0 + 0x + \frac{1}{2!} x^2 + \frac{0}{3!} x^3 + \frac{2}{4!} x^4 + \dotsb \\ &= \frac{1}{2} x^2 + \frac{1}{12} x^4 + \dotsb \; \blacksquare \end{align*}

(c)

Let x=π4{{ x = \frac{\pi}{4}}}

lnsecπ412(π4)2+112(π4)4ln2132π2+13072π412ln2132π2+13072π4ln2116π2+11536π4  \begin{align*} \ln \sec \frac{\pi}{4} &\approx \frac{1}{2} \left( \frac{\pi}{4} \right)^2 + \frac{1}{12} \left( \frac{\pi}{4} \right)^4 \\ \ln \sqrt{2} &\approx \frac{1}{32} \pi^2 + \frac{1}{3072} \pi^4 \\ \frac{1}{2} \ln 2 &\approx \frac{1}{32} \pi^2 + \frac{1}{3072} \pi^4 \\ \ln 2 &\approx \frac{1}{16} \pi^2 + \frac{1}{1536} \pi^4 \; \blacksquare \end{align*}

(d)

0110πlnsecxdx0110π12x2+112x4dx=[16x3+160x5]0110π=0.005219  (4 sf)  \begin{align*} & \int_0^{\frac{1}{10}\pi} \ln \sec x \, \mathrm{d}x \\ & \approx \int_0^{\frac{1}{10}\pi} \frac{1}{2} x^2 + \frac{1}{12} x^4 \, \mathrm{d}x \\ &= \left[ \frac{1}{6} x^3 + \frac{1}{60} x^5 \right]_0^{\frac{1}{10}\pi} \\ &= 0.005219 \; (\textrm{4 sf}) \; \blacksquare \end{align*}

Question Commentary

A rather typical Maclaurin expansion question (via differentiation). We employed two tricks to simplify our differentiation process.

First we used implicit differentiation immediately by taking exponents on both sides straightaway. We also made use of the tan2x+1=sec2x{{\tan^2 x + 1 = \sec^2 x }} identity in the middle steps.