2019 H2 Mathematics Paper 1 Question 7

Differentiation I: Tangents and Normals, Parametric Curves

Answers

Equation of tangent at x=1:  {x=1: \; } y=e1{y=\mathrm{e}^{-1}}
Equation of tangent at x=1:  {x=-1: \; } y=2ex+e{y=2\mathrm{e}x+\mathrm{e}}
79.6{79.6^\circ}

Full solutions

(i)

dydx=exxex=(1x)ex\begin{align*} \frac{\mathrm{d}y}{\mathrm{d}x} &= \mathrm{e}^{- x}-x\mathrm{e}^{- x} \\ &= (1-x) \mathrm{e}^{- x} \end{align*}
When x=1,{x=1,}
y=e1dydx=0\begin{align*} y &= \mathrm{e}^{-1} \\ \frac{\mathrm{d}y}{\mathrm{d}x} &= 0 \end{align*}
Equation of tangent at x=1{x=1} is:
y=e1  y= \mathrm{e}^{-1} \; \blacksquare
When x=1,{x=-1,}
y=edydx=2e\begin{align*} y &= - \mathrm{e} \\ \frac{\mathrm{d}y}{\mathrm{d}x} &= 2\mathrm{e} \end{align*}
Equation of tangent at x=1{x-=1} is:
y(e)=2e(x(1))y+e=2ex+2ey=2ex+e  \begin{gather*} y - (-\mathrm{e}) = 2 \mathrm{e} \Big(x-(-1) \Big) \\ y + \mathrm{e} = 2\mathrm{e}x + 2\mathrm{e} \\ y = 2\mathrm{e}x + \mathrm{e} \; \blacksquare \end{gather*}

(ii)

Angle between tangents=tan12e=79.6 (1 dp)  \begin{align*} & \textrm{Angle between tangents} \\ & = \tan^{-1} 2 \mathrm{e} \\ & = 79.6^{\circ} \textrm{ (1 dp)} \; \blacksquare \end{align*}