2013 H2 Mathematics Paper 1 Question 11

Differentiation I: Tangents and Normals, Parametric Curves

Answers

y=txt3{y = tx-t^3}
y=p2q+pq2{y=p^2q+pq^2}
M(32,12){M \left( \frac{3}{2}, \frac{1}{\sqrt{2}} \right)}
4152 units2{\frac{4}{15\sqrt{2}} \textrm{ units}^2}

Full solutions

(i)

dxdt=6tdydt=6t2\begin{align*} \frac{\mathrm{d}x}{\mathrm{d}t} &= 6 t \\ \frac{\mathrm{d}y}{\mathrm{d}t} &= 6 t^2 \\ \end{align*}
dydx=dydt÷dxdt=6t2÷6t=t\begin{align*} \frac{\mathrm{d}y}{\mathrm{d}x} &= \frac{\mathrm{d}y}{\mathrm{d}t} \div \frac{\mathrm{d}x}{\mathrm{d}t} \\ &=6 t^2 \div 6 t \\ &=t \\ \end{align*}
Tangent at the point with parameter t:{t:}
y2t3=t(x3t2)y=tx3t3+2t3\begin{gather*} y - 2 t^3 = t \left( x - 3 t^2 \right) \\ y = tx - 3t^3 + 2t^3 \\ \end{gather*}
Hence equation of tangent is
y=txt3  y = tx - t^3 \; \blacksquare

(ii)

Tangents at points P{P} and Q:{Q:}
y=pxp3y=qxq3\begin{align} && \quad y = px - p^3 \\ && \quad y = qx - q^3 \\ \end{align}
At R,{R,}
pxp3=qxq3(pq)x=p3q3=(pq)(p2+pq+q2)x=p2+pq+q2  \begin{align*} px-p^3 &= qx-q^3 \\ (p-q)x &= p^3 - q^3 \\ &= (p-q)(p^2+pq+q^2) \\ x &= p^2 + pq + q^2 \; \blacksquare \end{align*}
y=p(p2+pq+q2)p3=p2q+pq2  \begin{align*} y &= p(p^2+pq+q^2) - p^3 \\ &= p^2q + pq^2 \; \blacksquare \end{align*}
When pq=1,{pq=-1,}
x=p21+q2\begin{equation} x = p^2 - 1 + q^2 \end{equation}
y=pqy2=(pq)2=p2+2pq+q2=p22+q2\begin{align*} y &= -p - q \\ y^2 &= (-p-q)^2 \\ &= p^2 + 2pq + q^2 \\ &= p^2 -2 + q^2 \end{align*}
y2+1=p21+q2\begin{equation} y^2 + 1 = p^2 - 1 + q^2 \end{equation}
Equations (3){(3)} and (4){(4)} show that R{R} lies on the curve with equation x=y2+1  {x=y^2+1 \; \blacksquare}

(iii)

x=3t2y=2t3x=y2+1\begin{align} && \quad x &= 3t^2 \\ && \quad y &= 2t^3 \\ && \quad x &= y^2 + 1 \end{align}
Substituting equations (5){(5)} and (6){(6)} into (7),{(7),}
3t2=(2t3)2+14t63t2+1=0  \begin{gather*} 3t^2 = (2t^3)^2 + 1 \\ 4t^6 - 3t^2 + 1 = 0 \; \blacksquare \end{gather*}
Let u=t2{u=t^2}
4u33u+1=0(2u1)2(u+1)=0u=12   or u=1\begin{gather*} 4u^3 - 3u + 1 = 0 \\ (2u-1)^2(u+1) = 0 \\ u = \frac{1}{2} \; \textrm{ or } u = -1 \end{gather*}
t2=12 or t2=1 (NA)t^2 = \frac{1}{2} \textrm{ or } t^2 = -1 \textrm{ (NA)}
Since y0,{y\geq 0,}
t=12x=3t2=32y=2t3=12\begin{align*} t &=\frac{1}{\sqrt{2}} \\ x &= 3t^2 \\ &= \frac{3}{2} \\ y &= 2t^3 \\ &= \frac{1}{\sqrt{2}} \end{align*}
Exact coordinates of M:{M:}
(32,12)  \left( \frac{3}{2}, \frac{1}{\sqrt{2}} \right) \; \blacksquare

(iv)

Area under curve C from O to M=032y  dx=0122t3(6t)  dt=01212t4  dt=[12t55]012=125(12)4(12)=352\begin{align*} & \textrm{Area under curve } C \textrm{ from } O \textrm{ to } M \\ & = \int_0^{\frac{3}{2}} y \; \mathrm{d} x \\ & = \int_0^{\frac{1}{\sqrt{2}}} 2t^3 (6t) \; \mathrm{d} t \\ & = \int_0^{\frac{1}{\sqrt{2}}} 12t^4 \; \mathrm{d} t \\ & = \left[ \frac{12t^5}{5} \right]_0^{\frac{1}{\sqrt{2}}} \\ & = \frac{12}{5} \left( \frac{1}{\sqrt{2}} \right)^4 \left( \frac{1}{\sqrt{2}} \right) \\ & = \frac{3}{5\sqrt{2}} \end{align*}
The curve L{L} cuts the x-{x\textrm{-}}axis at x=1{x=1}
Area under curve L from x=1 to M=132y  dx=132x1  dx=[23(x1)32]132=23(12)32=23(12)12=132\begin{align*} & \textrm{Area under curve } L \textrm{ from } x=1 \textrm{ to } M \\ & = \int_1^{\frac{3}{2}} y \; \mathrm{d} x \\ & = \int_1^{\frac{3}{2}} \sqrt{x-1} \; \mathrm{d} x \\ & = \left[ \frac{2}{3} (x-1)^{\frac{3}{2}} \right]_1^{\frac{3}{2}} \\ & = \frac{2}{3} \left( \frac{1}{2} \right)^{\frac{3}{2}} \\ & = \frac{2}{3} \left( \frac{1}{2} \right) \sqrt{\frac{1}{2}} \\ & = \frac{1}{3\sqrt{2}} \\ \end{align*}
Area of shaded region=352132=4152 units2  \begin{align*} & \textrm{Area of shaded region} \\ & = \frac{3}{5\sqrt{2}} - \frac{1}{3\sqrt{2}} \\ & = \frac{4}{15\sqrt{2}} \textrm{ units}^2 \; \blacksquare \end{align*}