2022 H2 Mathematics Paper 1 Question 3

Differentiation I: Tangents and Normals, Parametric Curves

Answers

Gradient of normal =13.{= - \frac{1}{3}.}
x2y2=2.{x^2 - y^2 = 2.}
x2.{x \geq \sqrt{2}.}

Full solutions

(a)

dxdt=12(3e3t6e3t)dydt=12(3e3t+6e3t)dydx=dydt÷dxdt=12(3e3t+6e3t)12(3e3t6e3t)=e3t+2e3te3t2e3t\begin{align*} \frac{\mathrm{d}x}{\mathrm{d}t} &= \frac{1}{2} \left( 3\mathrm{e}^{3t} - 6 \mathrm{e}^{-3t} \right) \\ \frac{\mathrm{d}y}{\mathrm{d}t} &= \frac{1}{2} \left( 3\mathrm{e}^{3t} + 6 \mathrm{e}^{-3t} \right) \\ \frac{\mathrm{d}y}{\mathrm{d}x} &= \frac{\mathrm{d}y}{\mathrm{d}t} \div \frac{\mathrm{d}x}{\mathrm{d}t} \\ &= \frac{\frac{1}{2} \left( 3\mathrm{e}^{3t} + 6 \mathrm{e}^{-3t} \right)}{\frac{1}{2} \left( 3\mathrm{e}^{3t} - 6 \mathrm{e}^{-3t} \right)} \\ &= \frac{\mathrm{e}^{3t} + 2 \mathrm{e}^{-3t}}{\mathrm{e}^{3t}-2\mathrm{e}^{-3t}} \end{align*}
When x=13ln2,{x = \frac{1}{3} \ln 2,}
dydx=eln2+2eln2eln22eln2=3\begin{align*} \frac{\mathrm{d}y}{\mathrm{d}x} &= \frac{\mathrm{e}^{\ln 2} + 2 \mathrm{e}^{-\ln 2}}{\mathrm{e}^{\ln 2}-2\mathrm{e}^{-\ln 2}} \\ &= 3 \end{align*}
Gradient of normal=1÷dydx=13  \begin{align*} & \textrm{Gradient of normal} \\ & \quad = -1 \div \frac{\mathrm{d}y}{\mathrm{d}x} \\ & \quad = -\frac{1}{3} \; \blacksquare \end{align*}

(b)

x2=14(e3t+2e3t)24x2=e6t+4+4e6t4x24=e6t+4e6t\begin{gather*} x^2 = \frac{1}{4} \left( \mathrm{e}^{3t} + 2 \mathrm{e}^{-3t} \right)^2 \\ 4x^2 = \mathrm{e}^{6t} + 4 + 4 \mathrm{e}^{-6t} \\ 4x^2 - 4 = \mathrm{e}^{6t} + 4 \mathrm{e}^{-6t} \tag{1} \end{gather*}
y2=14(e3t2e3t)24y2=e6t4+4e6t4y2+4=e6t+4e6t\begin{gather*} y^2 = \frac{1}{4} \left( \mathrm{e}^{3t} - 2 \mathrm{e}^{-3t} \right)^2 \\ 4y^2 = \mathrm{e}^{6t} - 4 + 4 \mathrm{e}^{-6t} \\ 4y^2 + 4 = \mathrm{e}^{6t} + 4 \mathrm{e}^{-6t} \tag{2} \end{gather*}
Equation (1){(1)} and (2),{(2),} the cartesian equation of the curve is given by
4x24=4y2+4x2y2=2  \begin{align*} 4x^2 - 4 &= 4y^2 + 4 \\ x^2 - y^2 &= 2 \; \blacksquare \end{align*}
Since x2=y2+2,{x^2 = y^2 +2,} x22.{x^2 \geq 2.}
Moreover, x=12(e3t+2e3t){x = \frac{1}{2} \left( \mathrm{e}^{3t} + 2 \mathrm{e}^{-3t} \right)} indicates that x>0.{x > 0.}
Hence the restriction on the values of x{x} is x2.  {x \geq \sqrt{2}. \; \blacksquare}

Question Commentary

Part (b) of this question is tricky. While it has some similarities to 2010 Paper 1 Question 11, our attempt that year was to consider adding and subtracting the equations.

Instead, the hint for this part was to consider x2{x^2} and y2,{y^2,} which will help only after expansion and moving the constant.

The part on the restrictions on the values of x{x} is also non-standard. The full answer can only be obtained by considering both the cartesian form (by observing that squares are always non-negative or using our knowledge of hyperbolas) and the parametric form (which involves observing that exponentials are always positive).