Math Repository
about
topic
al
year
ly
Yearly
2015
P1 Q3
Topical
Areas & Volumes
15 P1 Q3
2015 H2 Mathematics Paper 1 Question 3
Definite Integrals: Areas and Volumes
Answers
(i)
1
n
{
f
(
1
n
)
+
…
+
f
(
n
n
)
}
\frac{1}{n} \Big\{ f\left( \frac{1}{n} \right) + \ldots + f\left( \frac{n}{n} \right) \Big\}
n
1
{
f
(
n
1
)
+
…
+
f
(
n
n
)
}
is the total area of
n
{n}
n
rectangles shown in the sketch.
This is an approximation of
∫
0
1
f
(
x
)
d
x
,
{\displaystyle \int_0^1 f(x) \; \mathrm{d}x, }
∫
0
1
f
(
x
)
d
x
,
which is the area under the curve.
As
n
→
∞
,
{n \to \infty, }
n
→
∞
,
the total area of the rectangles approach the area under the curve.
Hence
lim
n
→
∞
1
n
{
f
(
1
n
)
+
f
(
2
n
)
+
…
+
f
(
n
n
)
}
\displaystyle \lim_{n \to \infty} \frac{1}{n} \Bigg\{ f\left( \frac{1}{n} \right) + f\left( \frac{2}{n} \right) + \ldots + f\left( \frac{n}{n} \right) \Bigg\}
n
→
∞
lim
n
1
{
f
(
n
1
)
+
f
(
n
2
)
+
…
+
f
(
n
n
)
}
is
∫
0
1
f
(
x
)
d
x
.
{\displaystyle \int_0^1 f(x) \; \mathrm{d}x.}
∫
0
1
f
(
x
)
d
x
.
(ii)
3
4
{\frac{3}{4}}
4
3
Full solutions
(i)
1
n
{
f
(
1
n
)
+
…
+
f
(
n
n
)
}
\frac{1}{n} \Big\{ f\left( \frac{1}{n} \right) + \ldots + f\left( \frac{n}{n} \right) \Big\}
n
1
{
f
(
n
1
)
+
…
+
f
(
n
n
)
}
is the total area of
n
{n}
n
rectangles shown in the sketch.
This is an approximation of
∫
0
1
f
(
x
)
d
x
,
{\displaystyle \int_0^1 f(x) \; \mathrm{d}x, }
∫
0
1
f
(
x
)
d
x
,
which is the area under the curve.
As
n
→
∞
,
{n \to \infty, }
n
→
∞
,
the total area of the rectangles approach the area under the curve.
Hence
lim
n
→
∞
1
n
{
f
(
1
n
)
+
f
(
2
n
)
+
…
+
f
(
n
n
)
}
\displaystyle \lim_{n \to \infty} \frac{1}{n} \Bigg\{ f\left( \frac{1}{n} \right) + f\left( \frac{2}{n} \right) + \ldots + f\left( \frac{n}{n} \right) \Bigg\}
n
→
∞
lim
n
1
{
f
(
n
1
)
+
f
(
n
2
)
+
…
+
f
(
n
n
)
}
is
∫
0
1
f
(
x
)
d
x
.
{\displaystyle \int_0^1 f(x) \; \mathrm{d}x.}
∫
0
1
f
(
x
)
d
x
.
(ii)
lim
n
→
∞
(
1
3
+
2
3
+
…
+
n
3
n
3
)
=
∫
0
1
x
3
d
x
=
[
3
4
x
4
3
]
0
1
=
3
4
■
\begin{align*} & \lim_{n\to \infty} \left( \frac{\sqrt[3]{1} + \sqrt[3]{2} + \ldots + \sqrt[3]{n} }{\sqrt[3]{n}} \right) \\ & = \int_0^1 \sqrt[3] x \; \mathrm{d}x \\ & = \left[ \frac{3}{4} x^{\frac{4}{3}} \right]_0^1 \\ & = \frac{3}{4} \; \blacksquare \end{align*}
n
→
∞
lim
(
3
n
3
1
+
3
2
+
…
+
3
n
)
=
∫
0
1
3
x
d
x
=
[
4
3
x
3
4
]
0
1
=
4
3
■
Back to top ▲