2017 H2 Mathematics Paper 2 Question 1

Differentiation I: Tangents and Normals, Parametric Curves

Answers

215 units{2 \sqrt{15} \textrm{ units}}
xy=6{xy=6}

Full solutions

(i)

x=3ty=2ty=2x\begin{align} && \quad x = \frac{3}{t} \\ && \quad y = 2 t \\ && \quad y=2x \end{align}
Substituting (1){(1)} and (2){(2)} into (3),{(3),}
2t=2(3t)2t=6tt2=3t=±3\begin{align*} 2t &= 2 \left( \frac{3}{t} \right) \\ 2t &= \frac{6}{t} \\ t^2 &= 3 \\ t &= \pm \sqrt{3} \end{align*}
x=±33y=±23\begin{align*} x &= \pm \frac{3}{\sqrt{3}} \\ y &= \pm 2 \sqrt{3} \end{align*}
A(33,23)B(33,23)\begin{align*} & A \left( \frac{3}{\sqrt{3}}, 2\sqrt{3} \right) \\ & B \left( -\frac{3}{\sqrt{3}}, -2\sqrt{3} \right) \\ \end{align*}
Exact length of AB=(33+33)2+(23+23)2=363+16(3)=60=215 units  \begin{align*} & \textrm{Exact length of } AB \\ &= \sqrt{ \left( \frac{3}{\sqrt{3}} + \frac{3}{\sqrt{3}} \right)^2 + \left( 2\sqrt{3} + 2\sqrt{3} \right)^2 } \\ &= \sqrt{ \frac{36}{3} + 16(3) } \\ &= \sqrt{ 60 } \\ &= 2 \sqrt{15} \textrm{ units} \; \blacksquare \end{align*}

(ii)

dxdt=3t2dydt=2\begin{align*} \frac{\mathrm{d}x}{\mathrm{d}t} &= - \frac{3}{t^{2}} \\ \frac{\mathrm{d}y}{\mathrm{d}t} &= 2 \\ \end{align*}
dydx=dydt÷dxdt=2÷(3t2)=23t2\begin{align*} \frac{\mathrm{d}y}{\mathrm{d}x} &= \frac{\mathrm{d}y}{\mathrm{d}t} \div \frac{\mathrm{d}x}{\mathrm{d}t} \\ &=2 \div \left(- \frac{3}{t^{2}}\right) \\ &=- \frac{2}{3} t^2 \\ \end{align*}
At point P(3p,2p),{P \left( \frac{3}{p}, 2p \right), } t=p{t=p}
dydx=23p2\frac{\mathrm{d}y}{\mathrm{d}x} = - \frac{2}{3} p^2
Tangent at P(p2,2p):{P\left( p^2, \frac{2}{p} \right):}
y2p=23p2(x3p)y=23p2x+2p+2py=23p2x+4p\begin{gather*} y - 2p = - \frac{2}{3} p^2 \left( x - \frac{3}{p} \right) \\ y = - \frac{2}{3} p^2 x + 2p +2p \\ y = - \frac{2}{3} p^2 x + 4p \\ \end{gather*}
At D,y=0{D, y=0}
0=23p2x+4px=6p\begin{align*} 0 &= - \frac{2}{3} p^2 x + 4p \\ x &= \frac{6}{p} \end{align*}
At E,x=0{E, x=0}
y=23p2(0)+4p=4p\begin{align*} y &= - \frac{2}{3} p^2 (0) + 4p \\ &= 4p \end{align*}
D(6p,0)E(0,4p)F(3p,2p)\begin{align*} & D \left( \frac{6}{p}, 0 \right) \\ & E \left( 0, 4p \right) \\ & F \left( \frac{3}{p}, 2p \right) \\ \end{align*}
x=3py=2pp=y2\begin{align} &&\quad x &= \frac{3}{p} \\ &&\quad y &= 2p \\ &&\quad p &= \frac{y}{2} \end{align}
Substituting (6){(6)} into (4),{(4),}
x=3÷y2=6y\begin{align*} x &= 3 \div \frac{y}{2} \\ &= \frac{6}{y} \end{align*}
Cartesian equation of the curve traced by F{F} as p{p} varies:
xy=6  xy=6 \; \blacksquare