iz∗zn=e21πi⋅2e−32πi(2e32πi)n=2n−1e(32nπ+61π)i For the complex number to be purely imaginary, for k∈Z,
32nπ−61π32nπn=2π+kπ=31π+kπ=21+3k Smallest positive integer value of n
occurs when k=1
n=2■
2v+∣w∣3v−iw=1=−3+4i From (2),
v=3−3+4i+iw Substituting into (1),
2(3−3+4i+iw)+∣w∣=1 Let w=x+yi
2(3−3+4i+i(x+yi))+x2+y2−6+8i+2xi−2y+3x2+y2=1=3 Comparing imaginary parts,
8+2x2xx=0=−8=−4 Substituting x=−4
and comparing real parts,
−6−2y+3(−4)2+y2316+y29(16+y2)9y2+1445y2−36y+63(y−3)(5y−21)=3=9+2y=(9+2y)2=4y2+36y+81=0=0
y=3ory=521w=−4+3iorw=−4+521i Substituting w
into (1),
vv=3−3+4i+i(−4+3i)=−2orvv=3−3+4i+i(−4+521i)=−512
orw=−4+3i,v=−2■w=−4+521i,v=−512■