2023 H2 Mathematics Paper 1 Question 5

Sigma Notation

Answers

ln(n+1n)ln2. \ln \left( \frac{n+1}{n} \right) - \ln 2.
ln2. - \ln 2.
ln189200. \ln \frac{189}{200}.

Full solutions

(a)

r=2nln((r1)(r+1)r2)=r=2n(ln(r1)2lnr+ln(r+1))=ln12ln2+ln3+ln22ln3+ln4+ln32ln4+ln5++ln(n3)2ln(n2)+ln(n1)+ln(n2)2ln(n1)+lnn+ln(n1)2lnn+ln(n+1)=ln2lnn+ln(n+1)=ln(n+1n)ln2  \begin{align*} & \sum_{r=2}^n \ln \left( \frac{(r-1)(r+1)}{r^2} \right) \\ & = \sum_{r=2}^n \left( \ln (r-1) - 2 \ln r + \ln (r+1) \right) \\ & = \def\arraystretch{1.5} \begin{array}{lclclc} & \ln 1 &-& 2 \ln 2 &+& \cancel{\ln 3} \\ + & \ln 2 &-& \cancel{2 \ln 3} &+& \cancel{\ln 4} \\ + & \cancel{\ln 3} &-& \cancel{2 \ln 4} &+& \cancel{\ln 5} \\ + & \cdots & & & & \\ + & \cancel{\ln (n-3)} &-& 2 \cancel{\ln (n-2)} &+& \cancel{\ln (n-1)} \\ + & \cancel{\ln (n-2)} &-& 2 \cancel{\ln (n-1)} &+& \ln n \\ + & \cancel{\ln (n-1)} &-& 2 \ln n &+& \ln (n+1) \\ \end{array} \\ & = - \ln 2 - \ln n + \ln (n+1) \\ & = \ln \left( \frac{n+1}{n} \right) - \ln 2 \; \blacksquare \end{align*}

(b)

ln(n+1n)ln2=ln(1+1n)ln2\begin{align*} & \ln \left( \frac{n+1}{n} \right) - \ln 2 \\ & = \ln \left( 1 + \frac{1}{n} \right) - \ln 2 \end{align*}

As n,n \to \infty, 1n0\frac{1}{n} \to 0 so ln(1+1n)ln2ln2\ln \left( 1 + \frac{1}{n} \right) - \ln 2 \to - \ln 2 which is finite.

Hence the infinite series converges and the sum to infinity is ln2  - \ln 2 \; \blacksquare

(c)

r=1020ln((r1)(r+1)r2)=r=220ln((r1)(r+1)r2)r=29ln((r1)(r+1)r2)=ln(20+120)ln2(ln(9+120)ln2)=ln(2120÷109)=ln189200  \begin{align*} & \sum_{r=10}^{20} \ln \left( \frac{(r-1)(r+1)}{r^2} \right) \\ & = \sum_{r=2}^{20} \ln \left( \frac{(r-1)(r+1)}{r^2} \right) - \sum_{r=2}^{9} \ln \left( \frac{(r-1)(r+1)}{r^2} \right) \\ & = \ln \left( \frac{20+1}{20}\right) - \ln 2 - \left( \ln \left( \frac{9+1}{20} \right) - \ln 2 \right) \\ & = \ln \left( \frac{21}{20} \div \frac{10}{9} \right) \\ & = \ln \frac{189}{200} \; \blacksquare \end{align*}

Question Commentary

Method of differences is the way to go for this question where we apply our logarithm rules to get the differences. Subsequently we have the common follow-up concepts of convergence, sum to infinity, and modifying the limits of a sum.