2010 H2 Mathematics Paper 1 Question 6

Definite Integrals: Areas and Volumes

Answers

β=0.347,  γ=1.532{\beta = 0.347, \; \gamma = 1.532}
0.781 units2{0.781 \textrm{ units}^2}
94 units2{\frac{9}{4} \textrm{ units}^2}
1<k<3{- 1 < k < 3}

Full solutions

(i)

Using a GC,
β=0.34729=0.347 (3 dp)  γ=1.5321=1.532 (3 dp)  \begin{align*} \beta &= 0.34729 \\ &= 0.347 \textrm{ (3 dp)} \; \blacksquare \\ \gamma &= 1.5321 \\ &= 1.532 \textrm{ (3 dp)} \; \blacksquare \\ \end{align*}

(ii)

Area of region=0.347291.5321(x33x+1)  dx=0.781 units2 (3 sf)  \begin{align*} & \textrm{Area of region} \\ & = - \int_{0.34729}^{1.5321} \left( x^3 - 3 x + 1 \right) \; \mathrm{d}x \\ & = 0.781 \textrm{ units}^2 \textrm{ (3 sf)} \; \blacksquare \end{align*}

(iii)

At intersection between curve and the line y=1,{y=1,}
x33x+1=1x33x=0x(x23)=0x=0 or x=±3\begin{gather*} x^3 - 3 x + 1 = 1 \\ x^3 - 3x = 0 \\ x(x^2 - 3) = 0 \\ x=0 \textrm{ or } x = \pm \sqrt{3} \end{gather*}
Area of shaded region=30(x33x+11)  dx=[13x33x]30=014(9)+32(3)=94 units2  \begin{align*} & \textrm{Area of shaded region} \\ & = \int_{-\sqrt{3}}^0 \left( x^3 - 3 x + 1 - 1 \right) \; \mathrm{d}x \\ & = \left[ \frac{1}{3} x^3 - 3 x \right]_{-\sqrt{3}}^0 \\ & = 0 - \frac{1}{4}(9) + \frac{3}{2}(3) \\ &= \frac{9}{4} \textrm{ units}^2 \; \blacksquare \end{align*}

(iv)

Using a GC, the turning points of the curve are (1,3){\left( - 1, 3 \right)} and (1,1){\left( 1, - 1 \right)}
For the equation to have three real distinct roots, the line y=k{y=k} must cut the curve at three distinct points
From the graph,
1<k<3- 1 < k < 3