2009 H2 Mathematics Paper 2 Question 1

Differentiation I: Tangents and Normals, Parametric Curves

Answers

y=2x12{y = 2x-12}
Q(3,18){Q \left( - 3, - 18 \right)}

Full solutions

(i)

(ii)

dxdt=2t+4dydt=3t2+2t\begin{align*} \frac{\mathrm{d}x}{\mathrm{d}t} &= 2 t + 4 \\ \frac{\mathrm{d}y}{\mathrm{d}t} &= 3 t^2 + 2 t \\ \end{align*}
dydx=dydt÷dxdt=3t2+2t2t+4\begin{align*} \frac{\mathrm{d}y}{\mathrm{d}x} &= \frac{\mathrm{d}y}{\mathrm{d}t} \div \frac{\mathrm{d}x}{\mathrm{d}t} \\ &=\frac{ 3 t^2 + 2 t }{ 2 t + 4 } \\ \end{align*}
At point P,{P, } t=2{t=2}
x=12y=12dydx=2\begin{align*} x &= 12 \\ y &= 12 \\ \frac{\mathrm{d}y}{\mathrm{d}x} &= 2 \end{align*}
Tangent at P:{P:}
y12=2(x12)y=2x24+12\begin{gather*} y - 12 = 2 \left( x - 12 \right) \\ y = 2x-24+12 \\ \end{gather*}
Hence equation of l{l} is
l:  y=2x12  l: \; y = 2x-12 \; \blacksquare

(iii)

x=t2+4ty=t3+t2l:  y=2x12\begin{align} && \quad x &= t^2 + 4 t \\ && \quad y &= t^3 + t^2 \\ && \quad l: \; y &= 2x - 12 \\ \end{align}
Substituting (1){(1)} and (2){(2)} into (3),{(3),}
t3+t2=2(t2+4t)12t3t28t+12=0\begin{gather*} t^3 + t^2 = 2(t^2 + 4 t) - 12 \\ t^3 - t^2 - 8t + 12 = 0 \end{gather*}
We note that t=2{t=2} is a solution of this equation
t3t28t+12=(t2)(at2+bt+c)t^3 - t^2 - 8 t + 12 = (t-2)(at^2+bt+c)
Comparing coefficients,
x3:a=1x2:b2a=1b=1x0:c=6\begin{align*} &x^3:& \quad a &= 1 \\ &x^2:& \quad b-2a &= -1 \\ && b &= 1 \\ &x^0:& \quad c &= -6 \\ \end{align*}
t3t28t+12=0(t2)(t2+t6)=0(t2)(t2)(t+3)=0\begin{align*} t^3 - t^2 - 8 t + 12 &= 0 \\ (t-2)(t^2 + t - 6) &= 0 \\ (t-2)(t - 2)(t + 3) &= 0 \end{align*}
t=2 (NA) ort=3\begin{align*} t &= 2 \textrm{ (NA)} \quad \textrm{ or} \\ t &= - 3 \end{align*}
When t=3,{t=- 3,}
x=3y=18\begin{align*} x &= - 3 \\ y &= - 18 \end{align*}
Hence the coordinates of Q{Q} are
Q(3,18)  Q \left( - 3, - 18 \right) \; \blacksquare