Math Repository
about
topic
al
year
ly
Yearly
2013
P1 Q5
Topical
Areas & Volumes
13 P1 Q5
2013 H2 Mathematics Paper 1 Question 5
Definite Integrals: Areas and Volumes
Answers
(i)
(ii)
1
12
a
π
{\frac{1}{12} a \pi}
12
1
aπ
Full solutions
(i)
(ii)
d
x
d
θ
=
a
cos
θ
\frac{\mathrm{d}x}{\mathrm{d}\theta} = a \cos \theta
d
θ
d
x
=
a
cos
θ
When
x
=
1
2
a
,
{x=\frac{1}{2}a,}
x
=
2
1
a
,
θ
=
π
6
{\theta=\frac{\pi}{6}}
θ
=
6
π
When
x
=
3
2
a
,
{x=\frac{\sqrt{3}}{2}a,}
x
=
2
3
a
,
θ
=
π
3
{\theta=\frac{\pi}{3}}
θ
=
3
π
∫
1
2
a
3
2
a
f
(
x
)
d
x
=
∫
1
2
a
3
2
a
1
−
x
2
a
2
d
x
=
∫
π
6
π
3
1
−
a
2
sin
2
θ
a
2
a
cos
θ
d
θ
=
a
∫
π
6
π
3
1
−
sin
2
θ
cos
θ
d
θ
=
a
∫
π
6
π
3
cos
2
θ
d
θ
=
a
∫
π
6
π
3
cos
2
θ
+
1
2
d
θ
=
a
[
1
4
sin
2
θ
+
1
2
θ
]
π
6
π
3
d
θ
=
a
(
1
4
(
sin
2
π
3
−
sin
π
3
)
)
+
1
2
(
π
6
−
π
12
)
)
=
a
(
1
12
π
)
=
1
12
a
π
■
\begin{align*} & \int_{\frac{1}{2}a}^{\frac{\sqrt{3}}{2}a} f(x) \; \mathrm{d}x \\ & = \int_{\frac{1}{2}a}^{\frac{\sqrt{3}}{2}a} \sqrt{1-\frac{x^2}{a^2}} \; \mathrm{d}x \\ & = \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \sqrt{1-\frac{a^2 \sin^2 \theta}{a^2}} a \cos \theta \; \mathrm{d}\theta \\ & = a \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \sqrt{1-\sin^2 \theta} \cos \theta \; \mathrm{d}\theta \\ & = a \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \cos^2 \theta \; \mathrm{d}\theta \\ & = a \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \frac{\cos 2 \theta + 1}{2} \; \mathrm{d}\theta \\ & = a \left[ \frac{1}{4} \sin 2 \theta + \frac{1}{2} \theta \right]_{\frac{\pi}{6}}^{\frac{\pi}{3}} \; \mathrm{d}\theta \\ & = a \Bigg( \frac{1}{4} \left( \sin \frac{2\pi}{3} - \sin \frac{\pi}{3}) \right) + \frac{1}{2} \left( \frac{\pi}{6} - \frac{\pi}{12} \right) \Bigg) \\ & = a \left( \frac{1}{12} \pi \right) \\ & = \frac{1}{12} a \pi \; \blacksquare \end{align*}
∫
2
1
a
2
3
a
f
(
x
)
d
x
=
∫
2
1
a
2
3
a
1
−
a
2
x
2
d
x
=
∫
6
π
3
π
1
−
a
2
a
2
sin
2
θ
a
cos
θ
d
θ
=
a
∫
6
π
3
π
1
−
sin
2
θ
cos
θ
d
θ
=
a
∫
6
π
3
π
cos
2
θ
d
θ
=
a
∫
6
π
3
π
2
cos
2
θ
+
1
d
θ
=
a
[
4
1
sin
2
θ
+
2
1
θ
]
6
π
3
π
d
θ
=
a
(
4
1
(
sin
3
2
π
−
sin
3
π
)
)
+
2
1
(
6
π
−
12
π
)
)
=
a
(
12
1
π
)
=
12
1
aπ
■
Back to top ▲