2023 H2 Mathematics Paper 1 Question 6

Definite Integrals: Areas and Volumes

Answers

Show question.

81π8(π983).\frac{81 \pi}{8} \left( \pi - \frac{9}{8} \sqrt{3} \right).

Full solutions

(a)

cos4θ=(cos2θ)2=(cos2θ+12)2=cos22θ+2cos2θ+14=cos4θ+12+2cos2θ+14=18(cos4θ+1+4cos2θ+2)=18(cos4θ+4cos2θ+3)  \begin{align*} \cos^4 \theta &= \left( \cos^2 \theta \right)^2 \\ &= \left( \frac{\cos 2 \theta + 1}{2} \right)^2 \\ &= \frac{\cos^2 2\theta + 2 \cos 2 \theta + 1}{4} \\ & = \frac{\frac{\cos 4\theta +1}{2} + 2 \cos 2 \theta + 1}{4} \\ & = \frac{1}{8} \left( \cos 4 \theta + 1 + 4 \cos 2 \theta + 2 \right) \\ &= \frac{1}{8} \left( \cos 4\theta + 4 \cos 2 \theta + 3 \right) \; \blacksquare \end{align*}

(b)

x=3sinθd ⁣xd ⁣θ=3cosθ\begin{align*} x &= 3 \sin \theta \\ \frac{\operatorname{d}\!x}{\operatorname{d}\!\theta} &= 3 \cos \theta \end{align*}

When x=1.5,x=1.5, θ=16π\theta = \frac{1}{6} \pi
When x=3,x=3, θ=12π\theta = \frac{1}{2} \pi

Volume=π1.53y2dx=π1.53(9x2)32dx=π16π12π(99sin2θ)323cosθdθ=932(3π)16π12π(1sin2θ)32cosθdθ=81π16π12π(cos2θ)32cosθdθ=81π16π12πcos4θdθ=81π816π12π(cos4θ+4cos2θ+3)dθ=81π8[sin4θ4+2sin2θ+3θ]16π12π=81π8(0+0+3π2(sin2π34+2sinπ3+π2))=81π8(π383)=81π8(π983) units2  \begin{align*} &\text{Volume} \\ &= \pi \int_{1.5}^{3} y^2 \, \mathrm{d}x \\ &= \pi \int_{1.5}^{3} ( 9 - x^2 )^{\frac{3}{2}} \, \mathrm{d}x \\ &= \pi \int_{\frac{1}{6} \pi}^{\frac{1}{2} \pi} \left( 9 - 9 \sin^2 \theta \right)^{\frac{3}{2}} 3 \cos \theta \, \mathrm{d}\theta \\ &= 9^{\frac{3}{2}} (3\pi) \int_{\frac{1}{6} \pi}^{\frac{1}{2} \pi} \left( 1 - \sin^2 \theta \right)^{\frac{3}{2}} \cos \theta \, \mathrm{d}\theta \\ &= 81 \pi \int_{\frac{1}{6} \pi}^{\frac{1}{2} \pi} \left( \cos^2 \theta \right)^{\frac{3}{2}} \cos \theta \, \mathrm{d}\theta \\ &= 81 \pi \int_{\frac{1}{6} \pi}^{\frac{1}{2} \pi} \cos^4 \theta \, \mathrm{d}\theta \\ &= \frac{81 \pi}{8} \int_{\frac{1}{6} \pi}^{\frac{1}{2} \pi} \left( \cos 4\theta + 4 \cos 2 \theta + 3 \right) \, \mathrm{d}\theta \\ &= \frac{81 \pi}{8} \left[ \frac{\sin 4 \theta}{4} + 2 \sin 2 \theta + 3\theta \right]_{\frac{1}{6} \pi}^{\frac{1}{2} \pi} \\ &= \frac{81 \pi}{8} \left( 0 + 0 + \frac{3\pi}{2} - \left( \frac{\sin \frac{2\pi}{3}}{4} + 2 \sin \frac{\pi}{3} + \frac{\pi}{2} \right) \right) \\ &= \frac{81 \pi}{8} \left( \pi - \frac{\sqrt{3}}{8} - \sqrt{3} \right) \\ &= \frac{81 \pi}{8} \left( \pi - \frac{9}{8} \sqrt{3} \right) \text{ units}^2 \; \blacksquare \end{align*}

Question Commentary

The first part is rather tedious and requires the use of the double angle formula twice. Subsequently, the second part is more straightforward once we apply our volume of solid of revolution formula and using the result from the first part.