2014 H2 Mathematics Paper 1 Question 2

Differentiation I: Tangents and Normals, Parametric Curves

Answers

(3,3){\left(-3, -3 \right)}

Full solutions

x2y+xy2+54=0\begin{equation} \qquad x^2y + xy^2 + 54 = 0 \end{equation}
Differentiating implicitly w.r.t. x,{x,}
x2dydx+2xy+2xydydx+y2=0x^2 \frac{\mathrm{d}y}{\mathrm{d}x} + 2xy + 2xy \frac{\mathrm{d}y}{\mathrm{d}x} + y^2 = 0
When the gradient is 1,{-1,}
x2(1)+2xy+2xy(1)+y2=0x2+y2=0y2=x2\begin{gather*} x^2(-1)+2xy+2xy(-1)+y^2 = 0 \\ -x^2 + y^2 = 0 \\ y^2 = x^2 \end{gather*}
y=x ory=x\begin{align} && \quad y &= x \quad \textrm{ or} \\ && \quad y &= -x \end{align}
Substituting (2){(2)} into (1),{(1),}
x3+x3+54=02x3=54x3=27x=3y=3\begin{align*} x^3 + x^3 + 54 &= 0 \\ 2x^3 &= -54 \\ x^3 &= -27 \\ x &= -3 \\ y &= -3 \end{align*}
Substituting (3){(3)} into (1),{(1),}
LHS=x2(x)+x(x)2+54=x3+x3+54=540=RHS\begin{align*} \textrm{LHS} &= x^2(-x) + x(-x)^2 + 54 \\ &= -x^3 + x^3 + 54 \\ &= 54 \\ &\neq 0 = \textrm{RHS} \end{align*}
Hence the only solution to the system of equations is x=y=3,{x=y=-3, } so there is only on such point such that the gradient is 1  {-1 \; \blacksquare}
Coordinates of point on C{C} at which the gradient is 1:{-1: }
(3,3)  \left(-3, -3 \right) \; \blacksquare