2020 H2 Mathematics Paper 2 Question 3

Differentiation I: Tangents and Normals, Parametric Curves

Answers

2x+y=39{2x+y=39}
205718114.28 units2{\frac{2057}{18} \approx 114.28 \textrm{ units}^2}
(iiia)
20573685.67 units2{\frac{2057}{3} \approx 685.67 \textrm{ units}^2}
(iiib)
x=(y+3)254+4{x = \frac{(y+3)^2}{54} + 4}

Full solutions

(i)

dxdt=6tdydt=6\begin{align*} \frac{\mathrm{d}x}{\mathrm{d}t} &= 6 t \\ \frac{\mathrm{d}y}{\mathrm{d}t} &= 6 \\ \end{align*}
dydx=dydt÷dxdt=66t=1t\begin{align*} \frac{\mathrm{d}y}{\mathrm{d}x} &= \frac{\mathrm{d}y}{\mathrm{d}t} \div \frac{\mathrm{d}x}{\mathrm{d}t} \\ &=\frac{6}{6 t} \\ &= \frac{1}{t} \end{align*}
At point (14,11),{(14,11),}
6t1=11t=2dydx=12\begin{align*} 6t-1 &= 11 \\ t &= 2 \\ \frac{\mathrm{d}y}{\mathrm{d}x} &= \frac{1}{2} \end{align*}
Hence the gradient of N{N} is 2{-2}
Cartesian equation of N:{N:}
y11=2(x14)y11=2x+282x+y=39  \begin{gather*} y - 11 = -2 \left( x - 14 \right) \\ y-11 = -2x+28 \\ 2x+y=39 \; \blacksquare \end{gather*}

(ii)

Area under curve from t=16 to (14,11)=162(6t1)(6t)  dt=162(36t26t)  dt=[12t33t2]162=302536\begin{align*} & \textrm{Area under curve from } {\textstyle t=\frac{1}{6}} \textrm{ to } (14,11) \\ & = \int_{\frac{1}{6}}^{2} (6t-1) (6t) \; \mathrm{d}t \\ & = \int_{\frac{1}{6}}^{2} (36t^2 - 6t) \; \mathrm{d}t \\ & = \left[ 12 t^3 - 3 t^2 \right]_{\frac{1}{6}}^2 \\ & = \frac{3025}{36} \end{align*}
When the normal cuts the x-{x\textrm{-}}axis,
x=392x=\frac{39}{2}
Area under normal from (14,11) to (392,0)=12×(39214)×11=1214\begin{align*} & \textrm{Area under normal from } (14,11) \textrm{ to } {\textstyle \left( \frac{39}{2}, 0 \right)} \\ & = \frac{1}{2} \times \left( \frac{39}{2} - 14 \right) \times 11 \\ & = \frac{121}{4} \end{align*}
Area enclosed by C,N and the x-axis=302536+1214=205718 units2  \begin{align*} & \textrm{Area enclosed by } C, N \textrm{ and the } x\textrm{-axis} \\ & = \frac{3025}{36} + \frac{121}{4} \\ & = \frac{2057}{18} \textrm{ units}^2 \; \blacksquare \end{align*}
(iiia)
Area enclosed by D,M and the x-axis=205718×2×3=20573 units2  \begin{align*} & \textrm{Area enclosed by } D, M \textrm{ and the } x\textrm{-axis} \\ & = \frac{2057}{18} \times 2 \times 3 \\ & = \frac{2057}{3} \textrm{ units}^2 \; \blacksquare \end{align*}
(iiib)
Replacing x{x} with x2{\frac{x}{2}} and y{y} with y3,{\frac{y}{3},}
x2=3t2+2y3=6t1\begin{align} && \quad \frac{x}{2} = 3t^2 + 2 \\ && \quad \frac{y}{3} = 6t-1 \\ \end{align}
From (2),{(2),}
6t=y3+1=y+33t=y+318\begin{align*} 6t &= \frac{y}{3} + 1 \\ &= \frac{y+3}{3} \\ t &= \frac{y+3}{18} \\ \end{align*}
Substituting into (1),{(1),}
x2=3(y+318)2+2=(y+3)2108+2x=(y+3)254+4  \begin{align*} \frac{x}{2} &= 3 \left( \frac{y+3}{18} \right)^2 + 2 \\ &= \frac{(y+3)^2}{108} + 2 \\ x &= \frac{(y+3)^2}{54} + 4 \; \blacksquare \end{align*}