2024 H2 Mathematics Paper 1 Question 6

Differentiation I: Tangents and Normals, Parametric Curves

Answers

(a)

p=6, q=4, r=1.

(i)

a=4e.

(ii)

5.4 units2.

Full Solutions

(a)
y=2ex3+adydx=6x2ex3

When x=1,

y=2e+adydx=6e

Equation of tangent:

y(2e+a)=6e(x1)y=6e(x1)+2e+ay=6ex4e+ay=e(6x4)+a
(i)

Since the tangent to C at T passes through the origin,

0=4e+aa=4e
(ii)

Since a=4e, coordinates of T=(1,6e)

graph

Area required=01(2ex3+4e)dxarea of triangle=01(2ex3+4e)dx(12(1)(6e))=5.4 units2