Math Repository
about
topic
al
year
ly
Yearly
2016
P1 Q2
Topical
Tangents
16 P1 Q2
2016 H2 Mathematics Paper 1 Question 2
Differentiation I: Tangents and Normals, Parametric Curves
Answers
(i)
d
y
d
x
∣
x
=
0
=
0
{\frac{\mathrm{d}y}{\mathrm{d}x} \Big\vert_{x=0} = 0}
d
x
d
y
x
=
0
=
0
d
y
d
x
∣
x
=
π
2
=
−
0.693
{\frac{\mathrm{d}y}{\mathrm{d}x} \Big\vert_{x=\frac{\pi}{2}} = -0.693}
d
x
d
y
x
=
2
π
=
−
0.693
(ii)
y
=
2
{y=2}
y
=
2
y
=
−
0.693
x
+
2.09
{y = -0.693x + 2.09 }
y
=
−
0.693
x
+
2.09
(
0.128
,
2
)
{\left( 0.128, 2 \right)}
(
0.128
,
2
)
Full solutions
(i)
When
x
=
0
,
{x=0, }
x
=
0
,
gradient of
y
=
2
cos
x
{y=2^{\cos x}}
y
=
2
c
o
s
x
is
d
y
d
x
∣
x
=
0
=
0
■
\frac{\mathrm{d}y}{\mathrm{d}x} \Big\vert_{x=0} = 0 \; \blacksquare
d
x
d
y
x
=
0
=
0
■
When
x
=
1
2
π
,
{x=\frac{1}{2}\pi, }
x
=
2
1
π
,
gradient of
y
=
2
cos
x
{y=2^{\cos x}}
y
=
2
c
o
s
x
is
d
y
d
x
∣
x
=
π
2
=
−
0.69315
=
−
0.693
(3 sf)
■
\begin{align*} \frac{\mathrm{d}y}{\mathrm{d}x} \Big\vert_{x=\frac{\pi}{2}} &= -0.69315\\ &= -0.693 \textrm{ (3 sf)} \; \blacksquare \end{align*}
d
x
d
y
x
=
2
π
=
−
0.69315
=
−
0.693
(3 sf)
■
(ii)
Tangent at
x
=
0
:
{x=0:}
x
=
0
:
y
=
2
cos
0
y
=
2
■
\begin{align*} y &= 2^{\cos 0} \\ y &= 2 \; \blacksquare \end{align*}
y
y
=
2
c
o
s
0
=
2
■
Tangent at
x
=
1
2
π
:
{x=\frac{1}{2}\pi:}
x
=
2
1
π
:
y
−
2
cos
1
2
π
=
−
0.69315
(
x
−
π
2
)
y
−
1
=
−
0.69315
(
x
−
π
2
)
y
=
−
0.69315
x
+
2.0888
\begin{align*} y - 2^{\cos\frac{1}{2}\pi} &= -0.69315 \left( x - \frac{\pi}{2} \right) \\ y - 1 &= -0.69315 \left( x - \frac{\pi}{2} \right) \\ y &= -0.69315x + 2.0888 \end{align*}
y
−
2
c
o
s
2
1
π
y
−
1
y
=
−
0.69315
(
x
−
2
π
)
=
−
0.69315
(
x
−
2
π
)
=
−
0.69315
x
+
2.0888
y
=
−
0.693
x
+
2.09
■
y = -0.693x + 2.09 \; \blacksquare
y
=
−
0.693
x
+
2.09
■
Solving the two equations simultaneously,
2
=
−
0.69315
x
+
2.0888
x
=
2
−
2.0888
−
0.69315
x
=
0.12810
\begin{gather*} 2 = -0.69315x + 2.0888 \\ x = \frac{2-2.0888}{-0.69315} \\ x = 0.12810 \end{gather*}
2
=
−
0.69315
x
+
2.0888
x
=
−
0.69315
2
−
2.0888
x
=
0.12810
Coordinates of the point where these tangents meet:
(
0.128
,
2
)
■
\left( 0.128, 2 \right) \; \blacksquare
(
0.128
,
2
)
■
Back to top ▲