2007 H2 Mathematics Paper 1 Question 11

Differentiation I: Tangents and Normals, Parametric Curves

Answers

25 units2{\frac{2}{5} \textrm{ units}^2}

Full solutions

(i)

(ii)

dxdt=2costsintdydt=3sin2tcost\begin{align*} \frac{\mathrm{d}x}{\mathrm{d}t} &= -2\cos t \sin t \\ \frac{\mathrm{d}y}{\mathrm{d}t} &= 3 \sin^2 t \cos t \\ \end{align*}
dydx=dydt÷dxdt=3sin2tcost2costsint=32sint\begin{align*} \frac{\mathrm{d}y}{\mathrm{d}x} &= \frac{\mathrm{d}y}{\mathrm{d}t} \div \frac{\mathrm{d}x}{\mathrm{d}t} \\ &=\frac{3 \sin^2 t \cos t}{-2\cos t \sin t} \\ &=-\frac{3}{2} \sin t \\ \end{align*}
At point (cos2θ,sin3θ),{\left( \cos^2 \theta, \sin^3 \theta \right), } t=θ{t=\theta}
dydx=32sinθ\frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{3}{2} \sin \theta
Tangent at (cos2θ,sin3θ):{\left( \cos^2 \theta, \sin^3 \theta \right):}
ysin3θ=32sinθ(xcos2θ)y - \sin^3 \theta = -\frac{3}{2} \sin \theta \left( x - \cos^2 \theta \right)
At point Q,{Q, } substituting y=0{y=0} into equation of tangent
0sin3θ=32sinθ(xcos2θ)xcos2θ=23sin2θx=cos2θ+23sin2θ\begin{gather*} 0 - \sin^3 \theta = -\frac{3}{2} \sin \theta \left( x - \cos^2 \theta \right) \\ x - \cos^2 \theta = \frac{2}{3} \sin^2 \theta \\ x = \cos^2 \theta + \frac{2}{3} \sin^2 \theta \\ \end{gather*}
At point R,{R, } substituting x=0{x=0} into equation of tangent
ysin3θ=32sinθ(0cos2θ)y=sin3θ+32sinθcos2θ\begin{align*} y - \sin^3 \theta &= -\frac{3}{2} \sin \theta \left( 0 - \cos^2 \theta \right) \\ y &= \sin^3 \theta + \frac{3}{2}\sin \theta \cos^2 \theta \\ \end{align*}
Hence coordinates of Q{Q} and R{R} are:
Q(cos2θ+23sin2θ,0)R(0,sin3θ+32sinθcos2θ)\begin{align*} & Q \left( \cos^2 \theta + \frac{2}{3} \sin^2 \theta , 0 \right) \\ & R \left( 0 , \sin^3 \theta + \frac{3}{2}\sin \theta \cos^2 \theta \right) \end{align*}
Area of OQR=12(cos2θ+23sin2θ)(sin3θ+32sinθcos2θ)=12(13)(12)sinθ(3cos2θ+2sin2θ)(2sin2θ+3cos2θ)=112sinθ(3cos2θ+2sin2θ)2  \begin{align*} & \textrm{Area of } \triangle OQR \\ & = \frac{1}{2} \left( \cos^2 \theta + \frac{2}{3} \sin^2 \theta \right) \left( \sin^3 \theta + \frac{3}{2}\sin \theta \cos^2 \theta \right) \\ &= \frac{1}{2}\left( \frac{1}{3} \right)\left( \frac{1}{2} \right) \sin \theta \left( 3\cos^2 \theta + 2 \sin^2 \theta \right) \left( 2 \sin^2 \theta + 3\cos^2 \theta \right) \\ &= \frac{1}{12}\sin \theta \left( 3\cos^2 \theta + 2 \sin^2 \theta \right)^2 \; \blacksquare \end{align*}

(iii)

When x=0,{x=0,}
cos2t=0t=π2\begin{align*} \cos^2 t &= 0 \\ t &= \frac{\pi}{2} \end{align*}
When x=1,{x=1,}
cos2t=1t=0\begin{align*} \cos^2 t &= 1 \\ t &= 0 \end{align*}
Area under curve=01y  dx=π20sin3t(2costsint)  dt=2π20costsin4t  dt=20π2costsin4t  dt  \begin{align*} & \textrm{Area under curve} \\ & = \int_0^1 y \; \mathrm{d}x \\ & = \int_{\frac{\pi}{2}}^{0} \sin^3 t \left( -2 \cos t \sin t \right) \; \mathrm{d}t \\ &= -2 \int_{\frac{\pi}{2}}^{0} \cos t \sin^4 t \; \mathrm{d}t \\ &= 2 \int^{\frac{\pi}{2}}_{0} \cos t \sin^4 t \; \mathrm{d}t \; \blacksquare \end{align*}
u=sintdudt=cost\begin{align*} u &= \sin t \\ \frac{\mathrm{d}u}{\mathrm{d}t} &= \cos t \end{align*}
When t=0,{t=0,}
u=sin0=0\begin{align*} u &= \sin 0 \\ &= 0 \end{align*}
When t=π2,{t=\frac{\pi}{2},}
u=sinπ2=1\begin{align*} u &= \sin \frac{\pi}{2} \\ &= 1 \end{align*}
20π2costsin4t  dt=201cost  u4  1cost  du=201u4  du=2[u55]01=25 units2  \begin{align*} & 2 \int^{\frac{\pi}{2}}_{0} \cos t \sin^4 t \; \mathrm{d}t \\ & = 2 \int_0^1 \cos t \; u^4 \; \frac{1}{\cos t} \; \mathrm{d}u \\ & = 2 \int_0^1 u^4 \; \mathrm{d} u \\ & = 2 \left[ \frac{u^5}{5} \right]_0^1 \\ & = \frac{2}{5} \textrm{ units}^2 \; \blacksquare \end{align*}