Math Repository
about
topic
al
year
ly
Yearly
2020
P1 Q2
Topical
Tangents
20 P1 Q2
2020 H2 Mathematics Paper 1 Question 2
Differentiation I: Tangents and Normals, Parametric Curves
Answers
5
x
+
9
y
=
14
{5x+9y=14}
5
x
+
9
y
=
14
Full solutions
x
2
1
+
x
2
+
y
2
1
+
y
2
=
x
3
y
5
1
−
1
1
+
x
2
+
1
−
1
1
+
y
2
=
x
3
y
5
\begin{gather*} \frac{x^2}{1+x^2} + \frac{y^2}{1+y^2} = x^3 y^5 \\ 1 - \frac{1}{1+x^2} + 1 - \frac{1}{1+y^2} = x^3 y^5 \\ \end{gather*}
1
+
x
2
x
2
+
1
+
y
2
y
2
=
x
3
y
5
1
−
1
+
x
2
1
+
1
−
1
+
y
2
1
=
x
3
y
5
Differentiating w.r.t.
x
,
{x,}
x
,
2
x
(
1
+
x
2
)
2
+
2
y
(
1
+
y
2
)
2
d
y
d
x
=
3
x
2
y
5
+
5
x
3
y
4
d
y
d
x
\frac{2x}{(1+x^2)^2} + \frac{2y}{(1+y^2)^2}\frac{\mathrm{d}y}{\mathrm{d}x} = 3x^2 y^5 + 5x^3y^4 \frac{\mathrm{d}y}{\mathrm{d}x}
(
1
+
x
2
)
2
2
x
+
(
1
+
y
2
)
2
2
y
d
x
d
y
=
3
x
2
y
5
+
5
x
3
y
4
d
x
d
y
At
(
1
,
1
)
,
{(1,1), }
(
1
,
1
)
,
2
(
1
+
1
)
2
+
2
(
1
+
1
)
2
d
y
d
x
=
3
+
5
d
y
d
x
9
2
d
y
d
x
=
−
5
2
d
y
d
x
=
−
5
9
\begin{gather*} \frac{2}{(1+1)^2} + \frac{2}{(1+1)^2} \frac{\mathrm{d}y}{\mathrm{d}x} = 3 + 5 \frac{\mathrm{d}y}{\mathrm{d}x} \\ \frac{9}{2}\frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{5}{2} \\ \frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{5}{9} \end{gather*}
(
1
+
1
)
2
2
+
(
1
+
1
)
2
2
d
x
d
y
=
3
+
5
d
x
d
y
2
9
d
x
d
y
=
−
2
5
d
x
d
y
=
−
9
5
Equation of tangent at
(
1
,
1
)
:
{(1,1):}
(
1
,
1
)
:
y
−
1
=
−
5
9
(
x
−
1
)
9
y
−
9
=
−
5
x
+
5
5
x
+
9
y
=
14
■
\begin{gather*} y - 1 = -\frac{5}{9} (x-1) \\ 9y - 9 = -5x+5 \\ 5x + 9y = 14 \; \blacksquare \\ \end{gather*}
y
−
1
=
−
9
5
(
x
−
1
)
9
y
−
9
=
−
5
x
+
5
5
x
+
9
y
=
14
■
Back to top ▲