2019 H2 Mathematics Paper 1 Question 2

Definite Integrals: Areas and Volumes

Answers

a=0.682{a=0.682}
b=1.892{b=1.892}

Full solutions

(i)

Using a GC,
a=0.68233=0.682 (3 dp)  \begin{align*} a &= 0.68233 \\ &= 0.682 \textrm{ (3 dp)} \; \blacksquare \end{align*}

(ii)

0.68233b(x3+x1)  dx=210(x3+x1)  dx[14x4+12x2x]0.68233b=3.514b4+12b2b(0.39535)=3.514b4+12b2b3.1046=0\begin{gather*} \int_{0.68233}^b (x^3 + x - 1) \; \mathrm{d}x = -2\int_{-1}^0 (x^3 + x - 1) \; \mathrm{d}x \\ \left[ \frac{1}{4} x^4 + \frac{1}{2} x^2 - x \right]_{0.68233}^b = 3.5 \\ \frac{1}{4} b^4 + \frac{1}{2} b^2 - b - (-0.39535) = 3.5 \\ \frac{1}{4} b^4 + \frac{1}{2} b^2 - b -3.1046 = 0 \end{gather*}
Using a GC,
b=1.892 (3 dp)  b=1.892 \textrm{ (3 dp)} \; \blacksquare