2011 H2 Mathematics Paper 1 Question 5

Definite Integrals: Areas and Volumes

Answers

[0,2]{\left[ 0, 2 \right]}
a=2+5{a = 2 + \sqrt{5}}

Full solutions

(i)

(ii)

From the graphs, set of values of x{x} for which f(x)=f(x):{f\left(\left|x\right|\right)=\left|f(x)\right|:}
[0,2]  \left[ 0, 2 \right] \; \blacksquare

(iii)

11f(x)  dx=1af(x)  dx201f(x)  dx=12f(x)  dx+2af(x)  dx2012x  dx=122x  dx+2ax2  dx2[2x12x2]01=[2x12x2]12+[12x22x]2a2(32)=412(4)2+12+12a22a12(4)+4\begin{gather*} \int_{-1}^1 f\left(\left|x\right|\right) \; \mathrm{d}x = \int_1^a \left|f(x)\right| \; \mathrm{d}x \\ 2 \int_{0}^1 f(x) \; \mathrm{d}x = \int_1^2 f(x) \; \mathrm{d}x + \int_2^a -f(x) \; \mathrm{d}x \\ 2 \int_{0}^1 2-x \; \mathrm{d}x = \int_1^2 2-x \; \mathrm{d}x + \int_2^a x-2 \; \mathrm{d}x \\ 2 \left[ 2x - \frac{1}{2}x^2 \right]_{0}^1 = \left[ 2x - \frac{1}{2}x^2 \right]_{1}^2 + \left[ \frac{1}{2}x^2 - 2x \right]_{2}^a \\ 2 \left( \frac{3}{2} \right) = 4 - \frac{1}{2} (4) - 2 + \frac{1}{2} + \frac{1}{2}a^2 - 2a -\frac{1}{2}(4) + 4 \\ \end{gather*}
12a22a+52=3a24a1=0\begin{align*} \frac{1}{2}a^2 - 2a + \frac{5}{2} &= 3 \\ a^2 -4a - 1 &= 0 \end{align*}
a=4±424(1)2=4±202=4±252=2±5\begin{align*} a &= \frac{4 \pm \sqrt{4^2-4(-1)}}{2} \\ &= \frac{4 \pm \sqrt{20}}{2} \\ &= \frac{4 \pm 2 \sqrt{5}}{2} \\ &= 2 \pm \sqrt{5} \end{align*}
From the graph, since a>2,{a > 2,}
a=2+5  a = 2 + \sqrt{5} \; \blacksquare