2011 H2 Mathematics Paper 1 Question 3

Differentiation I: Tangents and Normals, Parametric Curves

Answers

y=1p3x+3p{y = -\frac{1}{p^3}x + \frac{3}{p}}
Q(3p2,0),{Q \left( 3p^2 , 0 \right), } R(0,3p){R \left( 0 , \frac{3}{p} \right)}
x=278y2{x = \frac{27}{8y^2}}

Full solutions

(i)

dxdt=2tdydt=2t2\begin{align*} \frac{\mathrm{d}x}{\mathrm{d}t} &= 2 t \\ \frac{\mathrm{d}y}{\mathrm{d}t} &= - \frac{2}{t^{2}} \\ \end{align*}
dydx=dydt÷dxdt=2t2÷2t=1t3\begin{align*} \frac{\mathrm{d}y}{\mathrm{d}x} &= \frac{\mathrm{d}y}{\mathrm{d}t} \div \frac{\mathrm{d}x}{\mathrm{d}t} \\ &=- \frac{2}{t^{2}} \div 2 t \\ &=- \frac{1}{t^{3}} \\ \end{align*}
At point P(p2,2p),{P \left( p^2, \frac{2}{p} \right), } t=p{t=p}
dydx=1p3\frac{\mathrm{d}y}{\mathrm{d}x} = - \frac{1}{p^{3}}
Tangent at P(p2,2p):{P\left( p^2, \frac{2}{p} \right):}
y2p=1p3(xp2)y=1p3x+1p+2p\begin{gather*} y - \frac{2}{p} = - \frac{1}{p^{3}} \left( x - p^2 \right) \\ y = -\frac{1}{p^3} x + \frac{1}{p} + \frac{2}{p} \\ \end{gather*}
Hence equation of tangent at P(p2,2p){P \left( p^2, \frac{2}{p} \right)} is
y=1p3x+3p  y = -\frac{1}{p^3}x + \frac{3}{p} \; \blacksquare

(ii)

At point Q,{Q, } substituting y=0{y=0} into equation of tangent at P,{P,}
0=1p3x+3px=3p2\begin{gather*} 0 = -\frac{1}{p^3}x + \frac{3}{p} \\ x = 3p^2 \end{gather*}
At point R,{R, } substituting x=0{x=0} into equation of tangent at P,{P,}
y=1p3(0)+3p=3p\begin{align*} y &= -\frac{1}{p^3}(0) + \frac{3}{p} \\ &= \frac{3}{p} \end{align*}
Hence coordinates of Q{Q} and R{R} are:
Q(3p2,0)  R(0,3p)  \begin{align*} & Q \left( 3p^2 , 0 \right) \; \blacksquare \\ & R \left( 0 , \frac{3}{p} \right) \; \blacksquare \\ \end{align*}

(iii)

Mid-point of QR:{QR:}
(3p22,32p)\left( \frac{3p^2}{2}, \frac{3}{2p} \right)
x=3p22y=32p\begin{align} && \quad x &= \frac{3p^2}{2} \\ && \quad y &= \frac{3}{2p} \end{align}
From (2),{(2),}
p=32y\begin{equation} p = \frac{3}{2y} \end{equation}
Substituting (3){(3)} into (1),{(1),}
x=3(32y)2÷2=278y2\begin{align*} x &= 3\left(\frac{3}{2y}\right)^2 \div 2 \\ &= \frac{27}{8y^2} \\ \end{align*}
Cartesian equation of the locus of the mid-point of QR{QR} as p{p} varies:
x=278y2  x=\frac{27}{8y^2} \; \blacksquare