2014 H2 Mathematics Paper 2 Question 1

Differentiation I: Tangents and Normals, Parametric Curves

Answers

t=2.5{t=2.5}
x=227y2{x=\frac{2}{27}y^2}

Full solutions

(i)

dxdt=6tdydt=6\begin{align*} \frac{\mathrm{d}x}{\mathrm{d}t} &= 6 t \\ \frac{\mathrm{d}y}{\mathrm{d}t} &= 6 \\ \end{align*}
dydx=dydt÷dxdt=66t=1t\begin{align*} \frac{\mathrm{d}y}{\mathrm{d}x} &= \frac{\mathrm{d}y}{\mathrm{d}t} \div \frac{\mathrm{d}x}{\mathrm{d}t} \\ &=\frac{6}{6 t} \\ &= \frac{1}{t} \\ \end{align*}
When the tangent to C{C} has gradient 0.4{0.4}
1t=0.4t=2.5  \begin{align*} \frac{1}{t} &= 0.4 \\ t &= 2.5 \; \blacksquare \end{align*}

(ii)

Tangent at P(3p2,6p):{P(3p^2, 6p): }
y6p=1p(x3p2)y=1px3p+6py=1px+3p\begin{gather*} y - 6p = \frac{1}{p} (x- 3p^2) \\ y = \frac{1}{p}x - 3p + 6p \\ y = \frac{1}{p}x + 3p \end{gather*}
When the tangent meets the y-{y\textrm{-}}axis, x=0,{x=0,}
y=3pD(0,3p)\begin{gather*} y = 3p \\ D(0, 3p) \end{gather*}
Mid-point of PD:{PD: }
(3p22,9p2)\left( \frac{3p^2}{2}, \frac{9p}{2} \right)
x=3p22y=9p2p=2y9\begin{align} && \quad x &= \frac{3p^2}{2} \\ && \quad y &= \frac{9p}{2} \\ && \quad p &= \frac{2y}{9} \\ \end{align}
Substituting (3){(3)} into (1),{(1),}
x=3(2y9)2÷2=227y2\begin{align*} x &= 3 \left( \frac{2y}{9} \right)^2 \div 2 \\ &= \frac{2}{27}y^2 \end{align*}
Cartesian equation of the locus of the mid-point of PD{PD} as p{p} varies:
x=227y2  x=\frac{2}{27}y^2 \; \blacksquare