Specimen 2017 H2 Mathematics Paper 1 Question 5

Differentiation II: Maxima, Minima, Rates of Change
Definite Integrals: Areas and Volumes

Answers

Maximum point at x=e3.{x=\mathrm{e}^3.}
20 units2.{20 \textrm{ units}^2.}

Full solutions

(a)

dydx=3(lnx)2(lnx)3x2 \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{3 \left( \ln x \right)^2 - \left( \ln x \right)^3}{x^2}
At turning point, dydx=0{\frac{\mathrm{d}y}{\mathrm{d}x} = 0}
3(lnx)2(lnx)3=0(lnx)2(3lnx)=0\begin{gather*} 3 \left( \ln x \right)^2 - \left( \ln x \right)^3 = 0 \\ \left( \ln x \right)^2 ( 3 - \ln x ) = 0 \end{gather*}
Since x>1,{x > 1,}
3lnx=0x=e3  \begin{gather*} 3 - \ln x = 0 \\ x = \mathrm{e}^3 \; \blacksquare \end{gather*}
When x<e3,{x < \mathrm{e}^3, } dydx>0{\frac{\mathrm{d}y}{\mathrm{d}x} > 0}
When x>e3,{x > \mathrm{e}^3, } dydx<0{\frac{\mathrm{d}y}{\mathrm{d}x} < 0}

Hence it is a maximum point when x=e3  {x=\mathrm{e}^3 \; \blacksquare}

(b)

Exact area of region=ee31x(lnx)3  dx=[14(lnx)4]ee3=(lne3)4(lne)44=20 units2  \begin{align*} & \textrm{Exact area of region} \\ & = \int_{\mathrm{e}}^{\mathrm{e}^3} \frac{1}{x} \left( \ln x \right)^3 \; \mathrm{d}x \\ & = \left[ \frac{1}{4} \left( \ln x \right)^4 \right]_{\mathrm{e}}^{\mathrm{e}^3} \\ & = \frac{(\ln \mathrm{e}^3)^4 - (\ln \mathrm{e})^4}{4} \\ & = 20 \textrm{ units}^2 \; \blacksquare \end{align*}