2017 H2 Mathematics Paper 1 Question 3

Differentiation II: Maxima, Minima, Rates of Change

Answers

x=12,  {x=\frac{1}{\sqrt{2}}, \;}x=12{x=-\frac{1}{\sqrt{2}}}
Maximum

Full solutions

(i)

y22xy+5x210=0\begin{equation} \qquad y^2 - 2xy + 5x^2 -10 = 0 \end{equation}
Differentiating w.r.t. x,{x,}
2ydydx2xdydx2y+10x=02y\frac{\mathrm{d}y}{\mathrm{d}x} - 2x\frac{\mathrm{d}y}{\mathrm{d}x} - 2y + 10x = 0
At stationary points, dydx=0{\displaystyle \frac{\mathrm{d}y}{\mathrm{d}x}=0}
002y+10x=00-0-2y+10x=0
y=5x\begin{equation} y = 5x \end{equation}
Substituting (2){(2)} into (1),{(1),}
(5x)22x(5x)+5x210=025x210x2+5x210=0x2=12\begin{gather*} (5x)^2 - 2x(5x) + 5x^2 - 10 = 0 \\ 25x^2 - 10x^2 + 5x^2 - 10 = 0 \\ x^2 = \frac{1}{2} \\ \end{gather*}
x=12  orx=12  \begin{align*} x &= \frac{1}{\sqrt{2}} \; \blacksquare \quad \textrm{or} \\ x &= -\frac{1}{\sqrt{2}} \; \blacksquare \end{align*}

(ii)

(yx)dydxy+5x=0(yx)d2ydx2+(dydx1)dydxdydx+5=0\begin{gather*} (y-x)\frac{\mathrm{d}y}{\mathrm{d}x} - y + 5x = 0 \\ (y-x)\frac{\mathrm{d}^{2}y}{\mathrm{d}x^{2}} + \left( \frac{\mathrm{d}y}{\mathrm{d}x} - 1 \right)\frac{\mathrm{d}y}{\mathrm{d}x} - \frac{\mathrm{d}y}{\mathrm{d}x} + 5 = 0 \\ \end{gather*}
When x=12,  {x=\frac{1}{\sqrt{2}}, \;} y=52{y=\frac{5}{\sqrt{2}}} and dydx=0{\frac{\mathrm{d}y}{\mathrm{d}x}=0}
(5212)d2ydx2+00+5=0(42)d2ydx2=5\begin{gather*} \left( \frac{5}{\sqrt{2}} - \frac{1}{\sqrt{2}} \right) \frac{\mathrm{d}^{2}y}{\mathrm{d}x^{2}} + 0 - 0 + 5 = 0 \\ \left( \frac{4}{\sqrt{2}} \right) \frac{\mathrm{d}^{2}y}{\mathrm{d}x^{2}} = -5 \\ \end{gather*}
d2ydx2=524<0\begin{align*} \frac{\mathrm{d}^{2}y}{\mathrm{d}x^{2}} &= -\frac{5\sqrt{2}}{4} \\ &< 0 \end{align*}
Hence the stationary point with x>0{x>0} is a maximum {\blacksquare}