Specimen 2017 H2 Mathematics Paper 2 Question 7

The Binomial Distribution

Answers

The probability of a randomly chosen sweet is yellow is the same for each sweet.
Whether a randomly chosen sweet is yellow is independent of any other sweet

0.886.{0.886.}

0.546.{0.546.}
27<p<37.{\frac{2}{7} < p < \frac{3}{7}.}

Full solutions

(i)

The probability of a randomly chosen sweet is yellow is the same for each sweet.
Whether a randomly chosen sweet is yellow is independent of any other sweet

Let X{X} denote the r.v. of the number of yellow sweets ini a packet of 6.

XB(6,110)X \sim \textrm{B}\left(6, \frac{1}{10}\right)
P(X1)=0.88574=0.886  \begin{align*} \mathrm{P}(X \leq 1) &= 0.88574\\ &= 0.886 \; \blacksquare \end{align*}

(ii)

Let Y{Y} denote the r.v. of the number of packets that contain no more than one yellow sweet out of 90.
XB(90,0.88574)X \sim \textrm{B}\left(90, 0.88574\right)
P(X80)=1P(X79)=0.546  \begin{align*} \mathrm{P}(X \geq 80) &= 1 - \mathrm{P}(X\leq 79) \\ &= 0.546 \; \blacksquare \end{align*}

(iii)

Let R{R} denote the r.v. of the number of red sweets in a packet of 6.
RB(6,p)R \sim \textrm{B}(6, p)
Since the modal number is 2,{2,}
P(R=2)>P(R=1)(62)p2(1p)4>(61)p(1p)515p>6(1p)p>27\begin{align*} \textrm{P} ( R=2 ) &> \textrm{P} (R=1) \\ {6 \choose 2} p^2 (1-p)^4 &> {6 \choose 1} p (1-p)^5 \\ 15 p &> 6 (1-p) \\ p &> \frac{2}{7} \end{align*}
P(R=2)>P(R=3)(62)p2(1p)4>(63)p3(1p)315(1p)>20pp<37\begin{align*} \textrm{P} ( R=2 ) &> \textrm{P} (R=3) \\ {6 \choose 2} p^2 (1-p)^4 &> {6 \choose 3} p^3 (1-p)^3 \\ 15 (1-p) &> 20 p \\ p &< \frac{3}{7} \end{align*}
Range of values that p{p} can take:
27<p<37  \frac{2}{7} < p < \frac{3}{7} \; \blacksquare