2013 H2 Mathematics Paper 2 Question 2

Differentiation II: Maxima, Minima, Rates of Change

Answers

Maximum V=154a3{\textrm{Maximum } V = \frac{1}{54} a^3}

Full solutions

(i)

Let y{y} denote the length that is cut
tan30=xy13=xyy=x3\begin{align*} \tan 30^\circ &= \frac{x}{y} \\ \frac{1}{\sqrt{3}} &= \frac{x}{y} \\ y &= x\sqrt{3} \end{align*}
V=12(a2y)2sin60x=12(a2x3)232x=14x3(a2x3)2  \begin{align*} V &= \frac{1}{2} \left( a - 2y \right)^2 \sin 60^\circ \, x \\ &= \frac{1}{2} \left( a - 2x\sqrt{3} \right)^2 \frac{\sqrt{3}}{2} \, x\\ &= \frac{1}{4} x \sqrt{3} \left( a - 2x\sqrt{3} \right)^2 \; \blacksquare \end{align*}

(ii)

dVdx=143(a2x3)2+12x3(a2x3)(23)=143(a2x3)23x(a2x3)=(a2x3)(143(a2x3)3x)=(a2x3)(a4332x3x)=(a2x3)(a4392x)\begin{align*} \frac{\mathrm{d}V}{\mathrm{d}x} &= \frac{1}{4}\sqrt{3} \left( a - 2x\sqrt{3} \right)^2 + \frac{1}{2} x \sqrt{3} \left( a - 2x\sqrt{3} \right) \left( -2\sqrt{3} \right) \\ &= \frac{1}{4}\sqrt{3} \left( a - 2x\sqrt{3} \right)^2 - 3x \left( a-2x\sqrt{3} \right) \\ &= \left( a-2x\sqrt{3} \right) \left( \frac{1}{4}\sqrt{3} \left(a - 2x \sqrt{3}\right) - 3x \right) \\ &= \left( a-2x\sqrt{3} \right) \left( \frac{a}{4}\sqrt{3} - \frac{3}{2}x - 3x \right) \\ &= \left( a-2x\sqrt{3} \right) \left( \frac{a}{4}\sqrt{3} - \frac{9}{2} x \right) \\ \end{align*}
At stationary values of V,{V, } dVdx=0{\displaystyle \frac{\mathrm{d}V}{\mathrm{d}x} = 0}
(a2x3)(a4392x)=0\left( a-2x\sqrt{3} \right) \left( \frac{a}{4}\sqrt{3} - \frac{9}{2} x \right) = 0
Since a2x30{a - 2x \sqrt{3} \neq 0} (otherwise V=0{V=0}),
a4392x=0x=118a3\begin{gather*} \frac{a}{4}\sqrt{3} - \frac{9}{2} x = 0 \\ x = \frac{1}{18} a \sqrt{3} \end{gather*}
V=14x3(a2x3)2=14(118a3)3(a2(118a3)3)2=124a(a13a)2=124a(23a)2=154a3  \begin{align*} V &= \frac{1}{4} x \sqrt{3} \left( a - 2x\sqrt{3} \right)^2 \\ &= \frac{1}{4} \left(\frac{1}{18} a \sqrt{3}\right) \sqrt{3} \Bigg( a - 2\left(\frac{1}{18} a \sqrt{3}\right)\sqrt{3} \Bigg)^2 \\ &= \frac{1}{24} a \left( a - \frac{1}{3}a \right)^2 \\ &= \frac{1}{24} a \left( \frac{2}{3}a \right)^2 \\ &= \frac{1}{54} a^3 \; \blacksquare \end{align*}
d2Vdx2=23(a4392x)92(a2x3)=32a+9x392a+9x3=6a+18x3\begin{align*} \frac{\mathrm{d}^{2}V}{\mathrm{d}x^{2}} &= -2\sqrt{3} \left( \frac{a}{4}\sqrt{3} - \frac{9}{2} x \right) - \frac{9}{2} \left( a-2x\sqrt{3} \right) \\ &= - \frac{3}{2} a + 9 x \sqrt{3} - \frac{9}{2} a + 9 x \sqrt{3} \\ &= - 6 a + 18x \sqrt{3} \end{align*}
When x=118a3,{x= \frac{1}{18} a \sqrt{3},}
d2Vdx2=6a+3a=3a<0\begin{align*} \frac{\mathrm{d}^{2}V}{\mathrm{d}x^{2}} &= -6a + 3a \\ &= -3a \\ &< 0 \end{align*}
Hence V=154a3{V = \frac{1}{54} a^3} is a maximum {\blacksquare}