Specimen 2017 H2 Mathematics Paper 2 Question 4

Maclaurin Series

Answers

k=2.{k=2.}
2x+2x2+4x3{2 x + 2 x^2 + 4 x^3}.
n=2,a=2.{n=2, a=2.}
Third non-zero term of the series expansion =83x3.{=\frac{8}{3}x^3.}

Full solutions

(i)

dydx=sec2(e2x1)(2e2x)=2e2x(tan2(e2x1)+1)=2e2x(1+y2)  \begin{align*} \frac{\mathrm{d}y}{\mathrm{d}x} &= \sec^2 (\mathrm{e}^{2x}-1) \cdot (2 \mathrm{e}^{2x}) \\ &= 2\mathrm{e}^{2x} \left( \tan^2(\mathrm{e}^{2x}-1)+1 \right) \\ &= 2\mathrm{e}^{2x} (1+y^2) \; \blacksquare \end{align*}
d2ydx2=4e2x(1+y2)+2e2x(2ydydx)=2dydx+4e2xydydx=2dydx(1+2e2xy)\begin{align*} \frac{\mathrm{d}^{2}y}{\mathrm{d}x^{2}} &= 4\mathrm{e}^{2x}(1+y^2) + 2\mathrm{e}^{2x}\left( 2y \frac{\mathrm{d}y}{\mathrm{d}x} \right) \\ &= 2\frac{\mathrm{d}y}{\mathrm{d}x} + 4\mathrm{e}^{2x}y\frac{\mathrm{d}y}{\mathrm{d}x} \\ &= 2\frac{\mathrm{d}y}{\mathrm{d}x} \left( 1 + 2\mathrm{e}^{2x}y \right) \end{align*}
d3ydx3=2d2ydx2(1+2e2xy)+2dydx(4e2xy+2e2xdydx) \frac{\mathrm{d}^{3}y}{\mathrm{d}x^{3}} = 2\frac{\mathrm{d}^{2}y}{\mathrm{d}x^{2}}(1+2\mathrm{e}^{2x}y) + 2\frac{\mathrm{d}y}{\mathrm{d}x}\left(4\mathrm{e}^{2x}y + 2\mathrm{e}^{2x}\frac{\mathrm{d}y}{\mathrm{d}x}\right)
When x=0,{x=0,}
y=tan(e2(0)1)=0dydx=2e2(0)(1+02)=2d2ydx2=2(2)(1+2e2(0)(0))=4d3ydx3=2(4)(1+2e2(0)(0))+2(2)(4e2(0)(0)+2e2(0)(2))=24\begin{align*} y &= \tan(\mathrm{e}^{2(0)}-1) \\ &= 0 \\ \frac{\mathrm{d}y}{\mathrm{d}x} &= 2 \mathrm{e}^{2(0)} (1 + 0^2) \\ &= 2 \\ \frac{\mathrm{d}^{2}y}{\mathrm{d}x^{2}} &= 2 (2) (1+2\mathrm{e}^{2(0)}(0)) \\ &= 4 \\ \frac{\mathrm{d}^{3}y}{\mathrm{d}x^{3}} &= 2(4)(1+2\mathrm{e}^{2(0)}(0)) + 2(2)(4\mathrm{e}^{2(0)}(0)+2\mathrm{e}^{2(0)}(2)) \\ &=24 \end{align*}

(ii)

Maclaurin series for tan(e2x1)=0+2x+42!x2+243!x3+=2x+2x2+4x3+  \begin{align*} & \textrm{Maclaurin series for } \tan(\mathrm{e}^{2x}-1) \\ & = 0 + 2x + \frac{4}{2!}x^2 + \frac{24}{3!}x^3 + \ldots \\ & = 2x + 2x^2 + 4x^3 + \ldots \; \blacksquare \end{align*}

(iii)

eaxln(1+nx)=(1+ax+12a2x2+16a3x3)(nx12n2x2+13n3x3)+=nx+(an12n2)x2+(13n312an2+12a2n)x3+\begin{align*} & \mathrm{e}^{ax} \ln (1+nx) \\ & = (1 + a x + \frac{1}{2} a^2 x^2 + \frac{1}{6} a^3 x^3) (n x - \frac{1}{2} n^2 x^2 + \frac{1}{3} n^3 x^3) + \ldots \\ & = nx + \left(an-\frac{1}{2}n^2 \right)x^2 + \left(\frac{1}{3}n^3 - \frac{1}{2}an^2 + \frac{1}{2}a^2n\right) x^3 + \ldots \\ \end{align*}
Since the first two non-zero terms are equal,
n=2  n = 2 \; \blacksquare
an12n2=2a=2  \begin{gather*} an - \frac{1}{2}n^2 = 2 \\ a = 2 \; \blacksquare \end{gather*}
Third non-zero term of the series expansion=(13n312an2+12a2n)x3=83x3  \begin{align*} & \textrm{Third non-zero term of the series expansion} \\ &= \left(\frac{1}{3}n^3 -\frac{1}{2}an^2 + \frac{1}{2}a^2n\right) x^3 \\ &= \frac{8}{3}x^3 \; \blacksquare \end{align*}