Math Repository
about
topic
al
year
ly
Yearly
2008
P1 Q7
Topical
Maxima
08 P1 Q7
2008 H2 Mathematics Paper 1 Question 7
Differentiation II: Maxima, Minima, Rates of Change
Answers
x
=
120
4
+
5
π
=
6.09
{x = \frac{120}{4+5\pi} = 6.09}
x
=
4
+
5
π
120
=
6.09
y
=
60
+
60
π
4
+
5
π
=
12.6
{y = \frac{60+60\pi}{4+5\pi} = 12.6}
y
=
4
+
5
π
60
+
60
π
=
12.6
Full solutions
3
(
x
+
2
y
)
+
9
(
π
(
x
2
)
)
=
180
3
x
+
6
y
+
9
2
π
x
=
180
6
y
=
180
−
3
x
−
9
2
π
x
y
=
30
−
1
2
x
−
3
4
π
x
\begin{gather*} 3(x+2y) + 9\Bigg( \pi \left(\frac{x}{2}\right) \Bigg) = 180 \\ 3x + 6y + \frac{9}{2}\pi x = 180 \\ 6y = 180-3x-\frac{9}{2}\pi x \\ y = 30 - \frac{1}{2}x - \frac{3}{4}\pi x \end{gather*}
3
(
x
+
2
y
)
+
9
(
π
(
2
x
)
)
=
180
3
x
+
6
y
+
2
9
π
x
=
180
6
y
=
180
−
3
x
−
2
9
π
x
y
=
30
−
2
1
x
−
4
3
π
x
Let
A
{A}
A
denote the area of the flower bed
A
=
x
y
+
1
2
π
(
x
2
)
2
=
x
(
30
−
1
2
x
−
3
4
π
x
)
+
1
8
π
x
2
=
30
x
−
1
2
x
2
−
5
8
π
x
2
\begin{align*} A &= xy + \frac{1}{2} \pi \left(\frac{x}{2}\right)^2 \\ &= x \left( 30 - \frac{1}{2}x - \frac{3}{4}\pi x \right) + \frac{1}{8} \pi x^2 \\ &= 30x - \frac{1}{2}x^2 - \frac{5}{8} \pi x^2 \end{align*}
A
=
x
y
+
2
1
π
(
2
x
)
2
=
x
(
30
−
2
1
x
−
4
3
π
x
)
+
8
1
π
x
2
=
30
x
−
2
1
x
2
−
8
5
π
x
2
d
A
d
x
=
30
−
x
−
5
4
π
x
\frac{\mathrm{d}A}{\mathrm{d}x} = 30 - x - \frac{5}{4} \pi x
d
x
d
A
=
30
−
x
−
4
5
π
x
At maximum
A
,
d
A
d
x
=
0
{\displaystyle A, \frac{\mathrm{d}A}{\mathrm{d}x} = 0}
A
,
d
x
d
A
=
0
30
−
x
−
5
4
π
x
=
0
30 - x - \frac{5}{4} \pi x = 0
30
−
x
−
4
5
π
x
=
0
x
=
30
÷
(
1
+
5
4
π
)
=
120
4
+
5
π
■
\begin{align*} x &= 30 \div \left( 1 + \frac{5}{4} \pi \right) \\ &= \frac{120}{4+5\pi} \; \blacksquare \end{align*}
x
=
30
÷
(
1
+
4
5
π
)
=
4
+
5
π
120
■
y
=
30
−
1
2
(
120
4
+
5
π
)
−
3
4
π
(
120
4
+
5
π
)
=
30
−
60
4
+
5
π
−
90
π
4
+
5
π
=
120
+
150
π
−
60
−
90
π
4
+
5
π
=
60
+
60
π
4
+
5
π
■
\begin{align*} y &= 30 - \frac{1}{2} \left( \frac{120}{4+5\pi} \right) - \frac{3}{4}\pi \left( \frac{120}{4+5\pi} \right) \\ &= 30 - \frac{60}{4+5\pi} - \frac{90\pi}{4+5\pi} \\ &= \frac{120+150\pi-60-90\pi}{4+5\pi} \\ &= \frac{60+60\pi}{4+5\pi} \; \blacksquare \end{align*}
y
=
30
−
2
1
(
4
+
5
π
120
)
−
4
3
π
(
4
+
5
π
120
)
=
30
−
4
+
5
π
60
−
4
+
5
π
90
π
=
4
+
5
π
120
+
150
π
−
60
−
90
π
=
4
+
5
π
60
+
60
π
■
d
2
A
d
x
2
=
−
1
−
5
4
π
<
0
\begin{align*} \frac{\mathrm{d}^{2}A}{\mathrm{d}x^{2}} &= -1 - \frac{5}{4}\pi \\ &< 0 \end{align*}
d
x
2
d
2
A
=
−
1
−
4
5
π
<
0
Hence, when
x
=
120
4
+
5
π
{x=\frac{120}{4+5\pi}}
x
=
4
+
5
π
120
and
y
=
60
+
60
π
4
+
5
π
{y=\frac{60+60\pi}{4+5\pi}}
y
=
4
+
5
π
60
+
60
π
, the area of the flower-bed is a maximum
■
{\blacksquare}
■
Back to top ▲