2008 H2 Mathematics Paper 1 Question 7

Differentiation II: Maxima, Minima, Rates of Change

Answers

x=1204+5π=6.09{x = \frac{120}{4+5\pi} = 6.09}
y=60+60π4+5π=12.6{y = \frac{60+60\pi}{4+5\pi} = 12.6}

Full solutions

3(x+2y)+9(π(x2))=1803x+6y+92πx=1806y=1803x92πxy=3012x34πx\begin{gather*} 3(x+2y) + 9\Bigg( \pi \left(\frac{x}{2}\right) \Bigg) = 180 \\ 3x + 6y + \frac{9}{2}\pi x = 180 \\ 6y = 180-3x-\frac{9}{2}\pi x \\ y = 30 - \frac{1}{2}x - \frac{3}{4}\pi x \end{gather*}
Let A{A} denote the area of the flower bed
A=xy+12π(x2)2=x(3012x34πx)+18πx2=30x12x258πx2\begin{align*} A &= xy + \frac{1}{2} \pi \left(\frac{x}{2}\right)^2 \\ &= x \left( 30 - \frac{1}{2}x - \frac{3}{4}\pi x \right) + \frac{1}{8} \pi x^2 \\ &= 30x - \frac{1}{2}x^2 - \frac{5}{8} \pi x^2 \end{align*}
dAdx=30x54πx\frac{\mathrm{d}A}{\mathrm{d}x} = 30 - x - \frac{5}{4} \pi x
At maximum A,dAdx=0{\displaystyle A, \frac{\mathrm{d}A}{\mathrm{d}x} = 0}
30x54πx=030 - x - \frac{5}{4} \pi x = 0
x=30÷(1+54π)=1204+5π  \begin{align*} x &= 30 \div \left( 1 + \frac{5}{4} \pi \right) \\ &= \frac{120}{4+5\pi} \; \blacksquare \end{align*}
y=3012(1204+5π)34π(1204+5π)=30604+5π90π4+5π=120+150π6090π4+5π=60+60π4+5π  \begin{align*} y &= 30 - \frac{1}{2} \left( \frac{120}{4+5\pi} \right) - \frac{3}{4}\pi \left( \frac{120}{4+5\pi} \right) \\ &= 30 - \frac{60}{4+5\pi} - \frac{90\pi}{4+5\pi} \\ &= \frac{120+150\pi-60-90\pi}{4+5\pi} \\ &= \frac{60+60\pi}{4+5\pi} \; \blacksquare \end{align*}
d2Adx2=154π<0\begin{align*} \frac{\mathrm{d}^{2}A}{\mathrm{d}x^{2}} &= -1 - \frac{5}{4}\pi \\ &< 0 \end{align*}
Hence, when x=1204+5π{x=\frac{120}{4+5\pi}} and y=60+60π4+5π{y=\frac{60+60\pi}{4+5\pi}}, the area of the flower-bed is a maximum {\blacksquare}