Specimen 2017 H2 Mathematics Paper 1 Question 11

Differential Equations (DEs)

Answers

dAdt=kA(10A).{\frac{\mathrm{d}A}{\mathrm{d}t} = k A (10 - A).}
t=14.13.{t = 14.13.}
9.65 m2.{9.65 \textrm{ m}^2.}
A=104e15ln(83)t+1{A = \frac{10}{4 \mathrm{e}^{-{ \frac{1}{5} \ln (\frac{8}{3}) } t} + 1}}

Full solutions

(a)

dAdt=kA(10A)  1A(10A)dAdt=k1A(10A)  dA=k  dt110A+110010A  dA=kt+c110lnA110ln10A=kt+c\begin{gather*} \frac{\mathrm{d}A}{\mathrm{d}t} = k A (10 - A) \; \blacksquare \\ \frac{1}{A(10 - A)} \frac{\mathrm{d}A}{\mathrm{d}t} = k \\ \int \frac{1}{A(10 - A)} \; \mathrm{d}A = \int k \; \mathrm{d}t \\ \int \frac{ 1 }{ 10 A } + \frac{ 1 }{ 100 - 10 A } \; \mathrm{d}A = kt + c \\ \frac{1}{10} \ln \left| A \right| - \frac{1}{10} \ln \left| 10 - A \right| = kt + c \\ \end{gather*}
lnA10A=10kt+10cA10A=e10kt+10cA10A=e10ce10ktA10A=be10kt\begin{align*} \ln \left| \frac{A}{10-A} \right | &= 10kt + 10c \\ \left| \frac{A}{10-A} \right | &= \mathrm{e}^{10kt + 10c} \\ \left| \frac{A}{10-A} \right | &= \mathrm{e}^{10c}\mathrm{e}^{10kt} \\ \frac{A}{10-A} &= b\mathrm{e}^{10kt} \\ \end{align*}
When t=0,A=2,{t=0, A=2,}
2102=be0b=14\begin{align*} \frac{2}{10-2} &= b \mathrm{e}^0 \\ b &= \frac{1}{4} \end{align*}
When t=5,A=4,{t=5, A=4,}
4104=14e10k(5)k=ln8350\begin{align*} \frac{4}{10-4} &= \frac{1}{4} \mathrm{e}^{10k(5)} \\ k &= \frac{\ln \frac{8}{3}}{50} \end{align*}
When A=8,{A=8,}
8108=14et5ln83et5ln83=16t=5ln16ln83=14.13 (2 d.p.)  \begin{align*} \frac{8}{10-8} &= \frac{1}{4} \mathrm{e}^{{ \frac{t}{5} \ln \frac{8}{3} } } \\ \mathrm{e}^{{ \frac{t}{5} \ln \frac{8}{3} } } &= 16 \\ t &= \frac{5 \ln 16}{\ln \frac{8}{3}} \\ &= 14.13 \textrm{ (2 d.p.)} \; \blacksquare \end{align*}

(b)

When t=24,{t=24,}
A10A=14e15ln(83)(24)A=(10A)27.707A=27.71 m2 (2 d.p.)  \begin{gather*} \frac{A}{10-A} = \frac{1}{4} \mathrm{e}^{{ \frac{1}{5} \ln (\frac{8}{3}) } (24)} \\ A = (10-A) 27.707 \\ A = 27.71 \textrm{ m}^2 \textrm{ (2 d.p.)} \; \blacksquare \end{gather*}

(c)

A10A=14et5ln834A=10et5ln83Aet5ln83A(4+et5ln83)=10et5ln83\begin{gather*} \frac{A}{10-A} = \frac{1}{4}\mathrm{e}^{{ \frac{t}{5} \ln \frac{8}{3} } } \\ 4A = 10\mathrm{e}^{{ \frac{t}{5} \ln \frac{8}{3} } }- A\mathrm{e}^{{ \frac{t}{5} \ln \frac{8}{3} } } \\ A(4+\mathrm{e}^{{ \frac{t}{5} \ln \frac{8}{3} } }) = 10\mathrm{e}^{{ \frac{t}{5} \ln \frac{8}{3} } } \end{gather*}
A=10et5ln834+et5ln83=104et5ln83+1=104eln(83)t+1=104(38)t+1  \begin{align*} A &= \frac{10 \mathrm{e}^{{ \frac{t}{5} \ln \frac{8}{3} } }}{4 + \mathrm{e}^{{ \frac{t}{5} \ln \frac{8}{3} } }} \\ &= \frac{10}{4 \mathrm{e}^{-{ \frac{t}{5} \ln \frac{8}{3} } } + 1} \\ & = \frac{10}{4 \mathrm{e}^{\ln (\frac{8}{3})^{-t}} + 1} \\ & = \frac{10}{4 (\frac{3}{8})^{t} + 1} \; \blacksquare \end{align*}
0{0}
t{t}
A{A}
2{2}
A=10{A=10}
A=f(t){A=f(t)}