Specimen 2017 H2 Mathematics Paper 1 Question 6

Vectors I: Basics, Dot and Cross Products

Answers

a=k(b+c).{\mathbf{a} = k (\mathbf{b} + \mathbf{c}).}
v=(2300)+λ(1301). \mathbf{v} = \begin{pmatrix} \frac{2}{3} \\ 0 \\ 0 \end{pmatrix} + \lambda \begin{pmatrix} - \frac{1}{3} \\ 0 \\ 1 \end{pmatrix}.

The set represents a line passing through the point with position vector (2300){\begin{pmatrix} \frac{2}{3} \\ 0 \\ 0 \end{pmatrix}} and parallel to the direction vector (1301).{\begin{pmatrix} - \frac{1}{3} \\ 0 \\ 1 \end{pmatrix}.}

Full solutions

(a)

a×b=c×aa×bc×a=0a×b+a×c=0a×(b+c)=0\begin{gather*} \mathbf{a} \times \mathbf{b} = \mathbf{c} \times \mathbf{a} \\ \mathbf{a} \times \mathbf{b} - \mathbf{c} \times \mathbf{a} = \mathbf{0} \\ \mathbf{a} \times \mathbf{b} + \mathbf{a} \times \mathbf{c} = \mathbf{0} \\ \mathbf{a} \times (\mathbf{b} + \mathbf{c}) = \mathbf{0} \\ \end{gather*}
Hence a{\mathbf{a}} is parallel to b+c{\mathbf{b} + \mathbf{c}}
a=k(b+c)   \mathbf{a} = k (\mathbf{b} + \mathbf{c}) \; \blacksquare
where kR{k \in \mathbb{R}}

(b)

Let v=(xyz).{\mathbf{v} = \begin{pmatrix} x \\ y \\ z \end{pmatrix}.}
(xyz)×(103)=(020)(3yz+3xy)=(020)\begin{align*} \begin{pmatrix} x \\ y \\ z \end{pmatrix} \times \begin{pmatrix} 1 \\ 0 \\ - 3 \end{pmatrix} &= \begin{pmatrix} 0 \\ 2 \\ 0 \end{pmatrix} \\ \begin{pmatrix} - 3 y \\ z + 3 x \\ - y \end{pmatrix} &= \begin{pmatrix} 0 \\ 2 \\ 0 \end{pmatrix} \\ \end{align*}
3y=0z+3x=2y=0\begin{align} && \quad -3y &= 0 \\ && \quad z+3x &= 2 \\ && \quad -y &= 0 \\ \end{align}
Solving (1),(2){(1), (2)} and (3){(3)} with a GC, set of vectors v:{\mathbf{v}:}
{v:v=(2300)+λ(1301),  λR}   \left\{ \mathbf{v}: \mathbf{v} = \begin{pmatrix} \frac{2}{3} \\ 0 \\ 0 \end{pmatrix} + \lambda \begin{pmatrix} - \frac{1}{3} \\ 0 \\ 1 \end{pmatrix}, \; \lambda \in \mathbb{R} \right\} \; \blacksquare
This set represents a line passing through the point with position vector (2300){\begin{pmatrix} \frac{2}{3} \\ 0 \\ 0 \end{pmatrix}} and parallel to the direction vector (1301).  {\begin{pmatrix} - \frac{1}{3} \\ 0 \\ 1 \end{pmatrix}. \; \blacksquare}