2009 H2 Mathematics Paper 1 Question 11

Differentiation II: Maxima, Minima, Rates of Change

Answers

(12,12e),  {\left( \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2\mathrm{e}}} \right), \;}(12,12e){\left( -\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2\mathrm{e}}} \right)}
12(1en2){\frac{1}{2} \left(1 - \mathrm{e}^{-n^2}\right)}
Area of the region between the curve and the positive x-{x\textrm{-}}axis =12 units2{=\frac{1}{2} \textrm{ units}^2}
1e4{1 - \mathrm{e}^{-4}}
0.363 units3{0.363 \textrm{ units}^3}

Full solutions

(i)

(ii)

f(x)=ex22x2ex2=(12x2)ex2\begin{align*} f'(x) &= \mathrm{e}^{-x^2} - 2x^2 \mathrm{e}^{-x^2} \\ &= (1-2x^2) \mathrm{e}^{-x^2} \end{align*}
At turning points, f(x)=0{f'(x) = 0}
(12x2)ex2=012x2=0\begin{gather*} (1-2x^2) \mathrm{e}^{-x^2} = 0 \\ 1-2x^2 = 0 \\ \end{gather*}
x=±12y=±12e12=±12e\begin{align*} x &= \pm \frac{1}{\sqrt{2}} \\ y &= \pm \frac{1}{\sqrt{2}} \mathrm{e}^{ - \frac{1}{2} } \\ &= \pm \frac{1}{\sqrt{2\mathrm{e}}} \\ \end{align*}
Coordinates of turning points:
(12,12e)  (12,12e)  \begin{align*} & \left( \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2\mathrm{e}}} \right) \; \blacksquare \\ & \left( -\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2\mathrm{e}}} \right) \; \blacksquare \\ \end{align*}

(iii)

dudx=2x\frac{\mathrm{d}u}{\mathrm{d}x} = 2x
When x=0,  {x=0, \;} u=0{u=0}
When x=n,  {x=n, \;} u=n2{u=n^2}
0nf(x)  dx=0nxex2  dx=0n2xeu12x  du=120n2eu  du=12[eu]0n2=12(en2(e0))=12(1en2)  \begin{align*} & \int_0^n f(x) \; \mathrm{d}x \\ & = \int_0^n x \mathrm{e}^{-x^2} \; \mathrm{d}x \\ & = \int_0^{n^2} x \mathrm{e}^{-u} \frac{1}{2x} \; \mathrm{d}u \\ & = \frac{1}{2} \int_0^{n^2} \mathrm{e}^{-u} \; \mathrm{d}u \\ & = \frac{1}{2} \left[ - \mathrm{e}^{-u} \right]_0^{n^2} \\ & = \frac{1}{2} \left(- \mathrm{e}^{-n^2} - (-\mathrm{e}^{-0}) \right) \\ & = \frac{1}{2} \left(1 - \mathrm{e}^{-n^2}\right) \; \blacksquare \end{align*}
As n,  en20{n \to \infty, \; \mathrm{e}^{-n^2} \to 0}
12(1en2)12\frac{1}{2} \left(1 - \mathrm{e}^{-n^2}\right) \to \frac{1}{2}
Hence the area of the region between the curve and the positive x-{x\textrm{-}}axis =12 units2  {=\frac{1}{2} \textrm{ units}^2 \; \blacksquare}

(iv)

22f(x)  dx=202f(x)  dx=2(12)(1e22)=1e4  \begin{align*} & \int_{-2}^2 \left| f(x) \right| \; \mathrm{d}x \\ & = 2 \int_0^2 f(x) \; \mathrm{d}x \\ & = 2 \left( \frac{1}{2} \right) \left( 1 - \mathrm{e}^{-2^2} \right) \\ & = 1 - \mathrm{e}^{-4} \; \blacksquare \end{align*}

(v)

Volume of revolution=π01(xex2)2  dx=0.363 (3 sf) units3  \begin{align*} & \textrm{Volume of revolution} \\ & = \pi \int_0^1 \left( x \mathrm{e}^{-x^2} \right)^2 \; \mathrm{d}x \\ & = 0.363 \textrm{ (3 sf)} \textrm{ units}^3 \; \blacksquare \end{align*}