Math Repository
about
topic
al
year
ly
Yearly
2012
P1 Q8
Topical
Maxima
12 P1 Q8
2012 H2 Mathematics Paper 1 Question 8
Differentiation II: Maxima, Minima, Rates of Change
Answers
(iii)
Maximum point
Full solutions
(i)
1
−
d
y
d
x
=
2
(
x
+
y
)
(
1
+
d
y
d
x
)
2
(
x
+
y
)
(
1
+
d
y
d
x
)
+
d
y
d
x
=
1
2
(
x
+
y
)
(
1
+
d
y
d
x
)
+
d
y
d
x
+
1
=
2
(
1
+
d
y
d
x
)
(
2
(
x
+
y
)
+
1
)
=
2
1
+
d
y
d
x
=
2
2
x
+
2
y
+
1
■
\begin{gather*} 1 - \frac{\mathrm{d}y}{\mathrm{d}x} = 2(x+y)(1+\frac{\mathrm{d}y}{\mathrm{d}x}) \\ 2(x+y)(1+\frac{\mathrm{d}y}{\mathrm{d}x}) + \frac{\mathrm{d}y}{\mathrm{d}x} = 1 \\ 2(x+y)(1+\frac{\mathrm{d}y}{\mathrm{d}x}) + \frac{\mathrm{d}y}{\mathrm{d}x} + 1 = 2 \\ (1+\frac{\mathrm{d}y}{\mathrm{d}x}) \Big( 2(x+y) + 1\Big) = 2 \\ 1 + \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{2}{2x+2y+1} \; \blacksquare \end{gather*}
1
−
d
x
d
y
=
2
(
x
+
y
)
(
1
+
d
x
d
y
)
2
(
x
+
y
)
(
1
+
d
x
d
y
)
+
d
x
d
y
=
1
2
(
x
+
y
)
(
1
+
d
x
d
y
)
+
d
x
d
y
+
1
=
2
(
1
+
d
x
d
y
)
(
2
(
x
+
y
)
+
1
)
=
2
1
+
d
x
d
y
=
2
x
+
2
y
+
1
2
■
(ii)
d
2
y
d
x
2
=
−
2
(
2
x
+
2
y
+
1
)
2
(
2
+
2
d
y
d
x
)
=
−
4
(
2
x
+
2
y
+
1
)
2
(
1
+
d
y
d
x
)
=
−
(
1
+
d
y
d
x
)
2
(
1
+
d
y
d
x
)
=
−
(
1
+
d
y
d
x
)
3
■
\begin{align*} \frac{\mathrm{d}^{2}y}{\mathrm{d}x^{2}} &= \frac{-2}{(2x+2y+1)^2} \left( 2+2\frac{\mathrm{d}y}{\mathrm{d}x} \right) \\ &= - \frac{4}{(2x+2y+1)^2} \left( 1+\frac{\mathrm{d}y}{\mathrm{d}x} \right) \\ &= - \left( 1 + \frac{\mathrm{d}y}{\mathrm{d}x} \right)^2 \left( 1+\frac{\mathrm{d}y}{\mathrm{d}x} \right) \\ &= - \left( 1+\frac{\mathrm{d}y}{\mathrm{d}x} \right)^3 \; \blacksquare \end{align*}
d
x
2
d
2
y
=
(
2
x
+
2
y
+
1
)
2
−
2
(
2
+
2
d
x
d
y
)
=
−
(
2
x
+
2
y
+
1
)
2
4
(
1
+
d
x
d
y
)
=
−
(
1
+
d
x
d
y
)
2
(
1
+
d
x
d
y
)
=
−
(
1
+
d
x
d
y
)
3
■
(iii)
At the turning point,
d
y
d
x
=
0
{\frac{\mathrm{d}y}{\mathrm{d}x}=0}
d
x
d
y
=
0
d
2
y
d
x
2
=
−
(
1
+
0
)
2
=
−
1
<
0
\begin{align*} \frac{\mathrm{d}^{2}y}{\mathrm{d}x^{2}} &= - \left( 1 + 0 \right)^2 \\ &= - 1 \\ &< 0 \end{align*}
d
x
2
d
2
y
=
−
(
1
+
0
)
2
=
−
1
<
0
Hence the turning point is a maximum point
■
{\blacksquare}
■
Back to top ▲